An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In category theory, a branch of mathematics, a subterminal object is an object X of a category C with the property that every object of C has at most one morphism into X. If X is subterminal, then the pair of identity morphisms (1X, 1X) makes X into the product of X and X. If C has a terminal object 1, then an object X is subterminal if and only if it is a subobject of 1, hence the name. The category of categories with subterminal objects and functors preserving them is not accessible.

Property Value
dbo:abstract
  • In category theory, a branch of mathematics, a subterminal object is an object X of a category C with the property that every object of C has at most one morphism into X. If X is subterminal, then the pair of identity morphisms (1X, 1X) makes X into the product of X and X. If C has a terminal object 1, then an object X is subterminal if and only if it is a subobject of 1, hence the name. The category of categories with subterminal objects and functors preserving them is not accessible. (en)
dbo:wikiPageID
  • 49651604 (xsd:integer)
dbo:wikiPageLength
  • 1994 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1038434328 (xsd:integer)
dbo:wikiPageWikiLink
dbp:id
  • subterminal+object (en)
dbp:title
  • Subterminal object (en)
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • In category theory, a branch of mathematics, a subterminal object is an object X of a category C with the property that every object of C has at most one morphism into X. If X is subterminal, then the pair of identity morphisms (1X, 1X) makes X into the product of X and X. If C has a terminal object 1, then an object X is subterminal if and only if it is a subobject of 1, hence the name. The category of categories with subterminal objects and functors preserving them is not accessible. (en)
rdfs:label
  • Subterminal object (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License