An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In computability theory, a semicomputable function is a partial function that can be approximated either from above or from below by a computable function. More precisely a partial function is upper semicomputable, meaning it can be approximated from above, if there exists a computable function , where is the desired parameter for and is the level of approximation, such that: * * Completely analogous a partial function is lower semicomputable if and only if is upper semicomputable or equivalently if there exists a computable function such that: * *

Property Value
dbo:abstract
  • Στη θεωρία υπολογισιμότητας, μία ημι-υπολογίσιμη συνάρτηση είναι μια μερική συνάρτηση που μπορεί να προσεγγιστεί είτε από πάνω είτε από κάτω από μια υπολογίσιμη συνάρτηση. Πιο συγκεκριμένα μια μερική συνάρτηση είναι άνω ημι-υπολογίσιμη, που σημαίνει ότι μπορεί να προσεγγιστεί από πάνω, αν υπάρχει μια υπολογίσιμη συνάρτηση , όπου είναι η επιθυμητή παράμετρος, για την και είναι το επίπεδο προσέγγισης, έτσι ώστε: * * Εντελώς ανάλογα μια μερική συνάρτηση είναι κάτω ημι-υπολογίσιμη αν η είναι άνω ημι-υπολογίσιμης ή ανάλογα αν υπάρχει μια υπολογίσιμη συνάρτηση τέτοια ώστε * * Εάν μια μερική συνάρτηση είναι και άνω και κάτω ημι-υπολογίσιμη λέγεται υπολογίσιμη. (el)
  • In computability theory, a semicomputable function is a partial function that can be approximated either from above or from below by a computable function. More precisely a partial function is upper semicomputable, meaning it can be approximated from above, if there exists a computable function , where is the desired parameter for and is the level of approximation, such that: * * Completely analogous a partial function is lower semicomputable if and only if is upper semicomputable or equivalently if there exists a computable function such that: * * If a partial function is both upper and lower semicomputable it is called computable. (en)
  • Na teoria da computabilidade, uma função semicomputável é uma função parcial que pode ser aproximada tanto por cima quanto por baixo através de uma função computável.Mais precisamente, uma função parcial é superiomente semicomputável, significando que ela pode ser aproximada por cima, se existe uma função computável , onde é parámetro desejado para e é o nível de aproximação, de modo que: * * Analogamente, uma função parcial é inferiormente semicomputável se e somente se é superiomente semicomputável ou equivalentemente, se existe uma função computável de modo que: * * Se uma função parcial for superior e inferiormente semicomputável, então ela passará a ser chamada de uma função computável. (pt)
dbo:wikiPageID
  • 22032894 (xsd:integer)
dbo:wikiPageLength
  • 1607 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1032157670 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • Στη θεωρία υπολογισιμότητας, μία ημι-υπολογίσιμη συνάρτηση είναι μια μερική συνάρτηση που μπορεί να προσεγγιστεί είτε από πάνω είτε από κάτω από μια υπολογίσιμη συνάρτηση. Πιο συγκεκριμένα μια μερική συνάρτηση είναι άνω ημι-υπολογίσιμη, που σημαίνει ότι μπορεί να προσεγγιστεί από πάνω, αν υπάρχει μια υπολογίσιμη συνάρτηση , όπου είναι η επιθυμητή παράμετρος, για την και είναι το επίπεδο προσέγγισης, έτσι ώστε: * * Εντελώς ανάλογα μια μερική συνάρτηση είναι κάτω ημι-υπολογίσιμη αν η είναι άνω ημι-υπολογίσιμης ή ανάλογα αν υπάρχει μια υπολογίσιμη συνάρτηση τέτοια ώστε * * (el)
  • In computability theory, a semicomputable function is a partial function that can be approximated either from above or from below by a computable function. More precisely a partial function is upper semicomputable, meaning it can be approximated from above, if there exists a computable function , where is the desired parameter for and is the level of approximation, such that: * * Completely analogous a partial function is lower semicomputable if and only if is upper semicomputable or equivalently if there exists a computable function such that: * * (en)
  • Na teoria da computabilidade, uma função semicomputável é uma função parcial que pode ser aproximada tanto por cima quanto por baixo através de uma função computável.Mais precisamente, uma função parcial é superiomente semicomputável, significando que ela pode ser aproximada por cima, se existe uma função computável , onde é parámetro desejado para e é o nível de aproximação, de modo que: * * Analogamente, uma função parcial é inferiormente semicomputável se e somente se é superiomente semicomputável ou equivalentemente, se existe uma função computável de modo que: * * (pt)
rdfs:label
  • Ημι-υπολογίσιμη συνάρτηση (el)
  • Semicomputable function (en)
  • Função semicomputável (pt)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License