A plane symmetry is a symmetry of a pattern in the Euclidean plane: that is, a transformation of the plane that carries any directioned lines to lines and preserves many different distances. If one has a pattern in the plane, the set of plane symmetries that preserve the pattern forms a group. The groups that arise in this way are plane symmetry groups and are of considerable mathematical interest. A symmetry plane is a three-dimensional object's symmetry axe. There are several kinds of plane symmetry groups:

Property Value
dbo:abstract
• A plane symmetry is a symmetry of a pattern in the Euclidean plane: that is, a transformation of the plane that carries any directioned lines to lines and preserves many different distances. If one has a pattern in the plane, the set of plane symmetries that preserve the pattern forms a group. The groups that arise in this way are plane symmetry groups and are of considerable mathematical interest. A symmetry plane is a three-dimensional object's symmetry axe. There are several kinds of plane symmetry groups: * Reflection groups. These are plane symmetry groups that are generated by reflections, possibly limited to reflections in lines through the origin. * Rotation groups. These groups consist of rotations around a point. * Translation groups. * Symmetries of geometrical figures. Some of these are reflection groups, e.g., the group of symmetries of the square or the rectangle. The symmetry group of a swastika or any similar figure without an axis of symmetry is a rotation group. (en)
dbo:wikiPageID
• 4039330 (xsd:integer)
dbo:wikiPageLength
• 1368 (xsd:integer)
dbo:wikiPageRevisionID
• 912033992 (xsd:integer)