In plane geometry with triangle ABC, the nine-point hyperbola is an instance of the nine-point conic described by Maxime Bôcher in 1892. The celebrated nine-point circle is a separate instance of Bôcher's conic: Given a triangle ABC and a point P in its plane, a conic can be drawn through the following nine points:the midpoints of the sides of ABC,the midpoints of the lines joining P to the vertices, andthe points where these last named lines cut the sides of the triangle.

Property Value
dbo:abstract
• In plane geometry with triangle ABC, the nine-point hyperbola is an instance of the nine-point conic described by Maxime Bôcher in 1892. The celebrated nine-point circle is a separate instance of Bôcher's conic: Given a triangle ABC and a point P in its plane, a conic can be drawn through the following nine points:the midpoints of the sides of ABC,the midpoints of the lines joining P to the vertices, andthe points where these last named lines cut the sides of the triangle. The conic is an ellipse if P lies in the interior of ABC or in one of the regions of the plane separated from the interior by two sides of the triangle; otherwise, the conic is a hyperbola. Bôcher notes that when P is the orthocenter, one obtains the nine-point circle, and when P is on the circumcircle of ABC, then the conic is an equilateral hyperbola. (en)
dbo:wikiPageID
• 18388859 (xsd:integer)
dbo:wikiPageLength
• 5380 (xsd:integer)
dbo:wikiPageRevisionID
• 926691291 (xsd:integer)
dbp:wikiPageUsesTemplate
dct:subject
rdfs:comment
• In plane geometry with triangle ABC, the nine-point hyperbola is an instance of the nine-point conic described by Maxime Bôcher in 1892. The celebrated nine-point circle is a separate instance of Bôcher's conic: Given a triangle ABC and a point P in its plane, a conic can be drawn through the following nine points:the midpoints of the sides of ABC,the midpoints of the lines joining P to the vertices, andthe points where these last named lines cut the sides of the triangle. (en)
rdfs:label
• Nine-point hyperbola (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf