An Entity of Type: Band, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In representation theory, a branch of mathematics, the Langlands dual LG of a reductive algebraic group G (also called the L-group of G) is a group that controls the representation theory of G. If G is defined over a field k, then LG is an extension of the absolute Galois group of k by a complex Lie group. There is also a variation called the Weil form of the L-group, where the Galois group is replaced by a Weil group. Here, the letter L in the name also indicates the connection with the theory of L-functions, particularly the automorphic L-functions. The Langlands dual was introduced by in a letter to A. Weil.

Property Value
dbo:abstract
  • In der Mathematik ist das Langlands-Dual einer Gruppe in Zusammenhang mit dem Langlands-Programm, einer Reihe von weitreichenden Vermutungen, die die Zahlentheorie und die Darstellungstheorie von Gruppen miteinander verknüpfen, von Bedeutung. (de)
  • In representation theory, a branch of mathematics, the Langlands dual LG of a reductive algebraic group G (also called the L-group of G) is a group that controls the representation theory of G. If G is defined over a field k, then LG is an extension of the absolute Galois group of k by a complex Lie group. There is also a variation called the Weil form of the L-group, where the Galois group is replaced by a Weil group. Here, the letter L in the name also indicates the connection with the theory of L-functions, particularly the automorphic L-functions. The Langlands dual was introduced by in a letter to A. Weil. The L-group is used heavily in the Langlands conjectures of Robert Langlands. It is used to make precise statements from ideas that automorphic forms are in a sense functorial in the group G, when k is a global field. It is not exactly G with respect to which automorphic forms and representations are functorial, but LG. This makes sense of numerous phenomena, such as 'lifting' of forms from one group to another larger one, and the general fact that certain groups that become isomorphic after field extensions have related automorphic representations. (en)
  • 수학에서 랭글랜즈 쌍대군(영어: Langlands dual group)은 주어진 군에서 근과 쌍대근(coroot)을 맞바꾼 군이다. (ko)
  • 数学の一分野である表現論では、簡約代数群 G のラングランズ双対 (Langlands dual) LG (また、G の L-群 とも言う)は、G の表現論を制御する群である。G を体 k 上の群とすると、LG は k の絶対ガロア群の (complex Lie group) による拡大である。また、L-群のヴェイユ形式と呼ばれる変形もあり、そこではガロア群はヴェイユ群に置き換わる。ラングランズ双対群も、L-群と呼ばれることもある。ここの文字 L は L-函数の理論、特に保型形式の L-函数の理論との関係を示している。 L-群はロバート・ラングランズ (Robert Langlands) のラングランズ予想で、重要な要素として使われている。これを使い、k が大域体のとき、保型形式が群 G の中で (functorial) を持つことを詳細に記述することができる。正確には、保型形式と表現が函手的であるという G に対してではなく、LG に対してである。このことは多くの現象で意味をもっている。例えば、ひとつの群から別のより大きな群への(保型)形式のリフティング(lifting)や、体の拡大の後にも同型であるような群は保型表現に関係しているという一般的な事実がある。 (ja)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 6789133 (xsd:integer)
dbo:wikiPageLength
  • 6834 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1020396029 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • In der Mathematik ist das Langlands-Dual einer Gruppe in Zusammenhang mit dem Langlands-Programm, einer Reihe von weitreichenden Vermutungen, die die Zahlentheorie und die Darstellungstheorie von Gruppen miteinander verknüpfen, von Bedeutung. (de)
  • 수학에서 랭글랜즈 쌍대군(영어: Langlands dual group)은 주어진 군에서 근과 쌍대근(coroot)을 맞바꾼 군이다. (ko)
  • 数学の一分野である表現論では、簡約代数群 G のラングランズ双対 (Langlands dual) LG (また、G の L-群 とも言う)は、G の表現論を制御する群である。G を体 k 上の群とすると、LG は k の絶対ガロア群の (complex Lie group) による拡大である。また、L-群のヴェイユ形式と呼ばれる変形もあり、そこではガロア群はヴェイユ群に置き換わる。ラングランズ双対群も、L-群と呼ばれることもある。ここの文字 L は L-函数の理論、特に保型形式の L-函数の理論との関係を示している。 L-群はロバート・ラングランズ (Robert Langlands) のラングランズ予想で、重要な要素として使われている。これを使い、k が大域体のとき、保型形式が群 G の中で (functorial) を持つことを詳細に記述することができる。正確には、保型形式と表現が函手的であるという G に対してではなく、LG に対してである。このことは多くの現象で意味をもっている。例えば、ひとつの群から別のより大きな群への(保型)形式のリフティング(lifting)や、体の拡大の後にも同型であるような群は保型表現に関係しているという一般的な事実がある。 (ja)
  • In representation theory, a branch of mathematics, the Langlands dual LG of a reductive algebraic group G (also called the L-group of G) is a group that controls the representation theory of G. If G is defined over a field k, then LG is an extension of the absolute Galois group of k by a complex Lie group. There is also a variation called the Weil form of the L-group, where the Galois group is replaced by a Weil group. Here, the letter L in the name also indicates the connection with the theory of L-functions, particularly the automorphic L-functions. The Langlands dual was introduced by in a letter to A. Weil. (en)
rdfs:label
  • Langlands-Dual (de)
  • Langlands dual group (en)
  • 랭글랜즈 쌍대군 (ko)
  • ラングランズ双対 (ja)
owl:differentFrom
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is rdfs:seeAlso of
is owl:differentFrom of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License