An Entity of Type: Election, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In probability theory, the Komlós–Major–Tusnády approximation (also known as the KMT approximation, the KMT embedding, or the Hungarian embedding) refers to one of the two strong embedding theorems: 1) approximation of random walk by a standard Brownian motion constructed on the same probability space, and 2) an approximation of the empirical process by a Brownian bridge constructed on the same probability space. It is named after Hungarian mathematicians János Komlós, , and , who proved it in 1975.

Property Value
dbo:abstract
  • In probability theory, the Komlós–Major–Tusnády approximation (also known as the KMT approximation, the KMT embedding, or the Hungarian embedding) refers to one of the two strong embedding theorems: 1) approximation of random walk by a standard Brownian motion constructed on the same probability space, and 2) an approximation of the empirical process by a Brownian bridge constructed on the same probability space. It is named after Hungarian mathematicians János Komlós, , and , who proved it in 1975. (en)
  • Le théorème d'approximation de Komlós-Major-Tusnády ou approximation KMT est un résultat d'approximation forte qui donne une borne d'approximation de la somme partielle de variables aléatoires centrées réduites i.i.d. dont la fonction génératrice des moments est définie sur un voisinage de 0. Il affirme en particulier que cette somme peut être approchée par un mouvement brownien avec une erreur de . (fr)
dbo:wikiPageID
  • 29184958 (xsd:integer)
dbo:wikiPageLength
  • 3077 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1118577064 (xsd:integer)
dbo:wikiPageWikiLink
dbp:date
  • January 2012 (en)
dbp:reason
  • surely alpha and B can't be independent, so what is independent of what? (en)
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • In probability theory, the Komlós–Major–Tusnády approximation (also known as the KMT approximation, the KMT embedding, or the Hungarian embedding) refers to one of the two strong embedding theorems: 1) approximation of random walk by a standard Brownian motion constructed on the same probability space, and 2) an approximation of the empirical process by a Brownian bridge constructed on the same probability space. It is named after Hungarian mathematicians János Komlós, , and , who proved it in 1975. (en)
  • Le théorème d'approximation de Komlós-Major-Tusnády ou approximation KMT est un résultat d'approximation forte qui donne une borne d'approximation de la somme partielle de variables aléatoires centrées réduites i.i.d. dont la fonction génératrice des moments est définie sur un voisinage de 0. Il affirme en particulier que cette somme peut être approchée par un mouvement brownien avec une erreur de . (fr)
rdfs:label
  • Théorème d'approximation de Komlós-Major-Tusnády (fr)
  • Komlós–Major–Tusnády approximation (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License