An Entity of Type: WikicatPermutationGroups, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In finite group theory, Jordan's theorem states that if a primitive permutation group G is a subgroup of the symmetric group Sn and contains a p-cycle for some prime number p < n − 2, then G is either the whole symmetric group Sn or the alternating group An. It was first proved by Camille Jordan. The statement can be generalized to the case that p is a prime power.

Property Value
dbo:abstract
  • In finite group theory, Jordan's theorem states that if a primitive permutation group G is a subgroup of the symmetric group Sn and contains a p-cycle for some prime number p < n − 2, then G is either the whole symmetric group Sn or the alternating group An. It was first proved by Camille Jordan. The statement can be generalized to the case that p is a prime power. (en)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 32823409 (xsd:integer)
dbo:wikiPageLength
  • 1609 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1111889401 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • In finite group theory, Jordan's theorem states that if a primitive permutation group G is a subgroup of the symmetric group Sn and contains a p-cycle for some prime number p < n − 2, then G is either the whole symmetric group Sn or the alternating group An. It was first proved by Camille Jordan. The statement can be generalized to the case that p is a prime power. (en)
rdfs:label
  • Jordan's theorem (symmetric group) (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License