In geometry, a hyperplane is a subspace whose dimension is one less than that of its ambient space. If a space is 3-dimensional then its hyperplanes are the 2-dimensional planes, while if the space is 2-dimensional, its hyperplanes are the 1-dimensional lines. This notion can be used in any general space in which the concept of the dimension of a subspace is defined. The difference in dimension between a subspace S and its ambient space X is known as the codimension of S with respect to X. Therefore, a necessary condition for S to be a hyperplane in X is for S to have codimension one in X.

Property Value
dbo:abstract
• In geometry, a hyperplane is a subspace whose dimension is one less than that of its ambient space. If a space is 3-dimensional then its hyperplanes are the 2-dimensional planes, while if the space is 2-dimensional, its hyperplanes are the 1-dimensional lines. This notion can be used in any general space in which the concept of the dimension of a subspace is defined. In different settings, hyperplanes may have different properties. For instance, a hyperplane of an n-dimensional affine space is a flat subset with dimension n − 1 and it separates the space into two half spaces. While a hyperplane of an n-dimensional projective space does not have this property. The difference in dimension between a subspace S and its ambient space X is known as the codimension of S with respect to X. Therefore, a necessary condition for S to be a hyperplane in X is for S to have codimension one in X. (en)
dbo:wikiPageID
• 99862 (xsd:integer)
dbo:wikiPageLength
• 8493 (xsd:integer)
dbo:wikiPageRevisionID
• 956154026 (xsd:integer)
dbp:title
• Flat (en)
• Hyperplane (en)
dbp:urlname
• Flat (en)
• Hyperplane (en)
dbp:wikiPageUsesTemplate
dct:subject
rdf:type
rdfs:comment
• In geometry, a hyperplane is a subspace whose dimension is one less than that of its ambient space. If a space is 3-dimensional then its hyperplanes are the 2-dimensional planes, while if the space is 2-dimensional, its hyperplanes are the 1-dimensional lines. This notion can be used in any general space in which the concept of the dimension of a subspace is defined. The difference in dimension between a subspace S and its ambient space X is known as the codimension of S with respect to X. Therefore, a necessary condition for S to be a hyperplane in X is for S to have codimension one in X. (en)
rdfs:label
• Hyperplane (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of