In mathematics, a Hurwitz polynomial, named after Adolf Hurwitz, is a polynomial whose roots (zeros) are located in the left half-plane of the complex plane or on the imaginary axis, that is, the real part of every root is zero or negative. Such a polynomial must have coefficients that are positive real numbers. The term is sometimes restricted to polynomials whose roots have real parts that are strictly negative, excluding the axis (i.e., a Hurwitz stable polynomial). A polynomial function P(s) of a complex variable s is said to be Hurwitz if the following conditions are satisfied:

Property Value
dbo:abstract
  • In mathematics, a Hurwitz polynomial, named after Adolf Hurwitz, is a polynomial whose roots (zeros) are located in the left half-plane of the complex plane or on the imaginary axis, that is, the real part of every root is zero or negative. Such a polynomial must have coefficients that are positive real numbers. The term is sometimes restricted to polynomials whose roots have real parts that are strictly negative, excluding the axis (i.e., a Hurwitz stable polynomial). A polynomial function P(s) of a complex variable s is said to be Hurwitz if the following conditions are satisfied: 1. P(s) is real when s is real.2. The roots of P(s) have real parts which are zero or negative. Hurwitz polynomials are important in control systems theory, because they represent the characteristic equations of stable linear systems. Whether a polynomial is Hurwitz can be determined by solving the equation to find the roots, or from the coefficients without solving the equation by the Routh–Hurwitz stability criterion. (en)
  • En matemáticas, un polinomio de Hurwitz, nombrado por Adolf Hurwitz, es un polinomio cuyas raíces (ceros) están localizados en el semiplano izquierdo del plano complejo, o en el eje imaginario, esto quiere decir que la parte real de cada raíz es cero o negativa.​​ Tal polinomio debe tener coeficientes que son reales positivos. El término está a veces restringido para polinomios cuyas raíces tengan partes reales estrictamente negativas, excluyendo los ejes (ej. un polinomio estable de Hurwitz).​​ Una función polinómica de una variable compleja se dice que es de Hurwitz si satisface las siguientes condiciones: 1. * es real cuando es real. 2. * Las raíces de tienen partes reales las cuales son cero o negativas. Los polinomios de Hurwitz son importantes en la teoría de los sistemas de control, porque representan las ecuaciones características de sistemas lineares estables. Si un polinomio es de Hurwitz puede ser determinado resolviendo la ecuación para hallar las raíces, o desde los coeficientes sin resolver la ecuación, por el criterio de estabilidad de Routh-Hurwitz. (es)
  • Ein Hurwitzpolynom (nach Adolf Hurwitz) ist ein reelles Polynom, dessen Nullstellen alle einen echt negativen Realteil haben. (de)
  • Un polynôme de Hurwitz, ainsi nommé en l'honneur du mathématicien allemand Adolf Hurwitz, est un polynôme d’une variable à coefficients réels dont les racines sont toutes à partie réelle strictement négative. De tels polynômes jouent un rôle important dans la théorie des équations différentielles linéaires à coefficients constants ainsi qu'en automatique, pour l’analyse de la stabilité des systèmes dynamiques. Le critère de Routh-Hurwitz, détaillé plus bas, permet de tester cette stabilité. Il a été obtenu indépendamment par le mathématicien anglais Edward Routh en 1875 et par Hurwitz en 1895 et a été amélioré en 1914 par les mathématiciens français Liénard et Chipart dont le test de stabilité (également détaillé plus bas) est probablement le plus simple et le plus efficace. L'intérêt pour ces différents critères a été relancé dans les années 1980 par le (en). Le lecteur pourra trouver quelques éléments historiques aux articles Automatique et Stabilité de Lyapunov. Le (en) est l'équivalent du critère de Routh-Hurwitz pour les systèmes à temps discret. (fr)
  • In matematica per polinomio di Hurwitz si intende un polinomio i cui zeri sono posti nella parte sinistra del piano complesso, cioè sono numeri complessi aventi parte reale negativa. Questi polinomi sono così chiamati in onore di Adolf Hurwitz. (it)
  • Um polinômio de Hurwitz (ver Adolf Hurwitz) é um polinômio, cujos coeficientes são números reais positivos, cujos zeros são localizados no semi-plano esquerdo dos números complexos, isto é, a parte real de todas as raízes é negativa. (pt)
  • 赫爾維茨多項式(Hurwitz polynomial)得名自德國數學家阿道夫·赫維茲,是一種特殊的多項式,其係數為正值,而且其根解都在複數平面的左半邊或是在虛軸上,也就是根的實部均為負數或是零。有時此一用語會將多項式根的實部限制為只允許負值,也就是解不能在虛軸上(赫爾維茨穩定多項式)。 若以下二個條件皆成立,複變數s 的多項式P(s)為赫尔维茨多項式: 1. 若s為實數,則P(s)為實數。2. P(s)根的實部均為零或負值。 赫爾維茨多項式在控制系統理論中非常重要,其表示穩定線性非時變系統的特徵多項式。多項式是否赫爾維茨多項式可以直接求解方程式,或是用劳斯–赫尔维茨稳定性判据求得。 (zh)
dbo:wikiPageID
  • 45857 (xsd:integer)
dbo:wikiPageLength
  • 3741 (xsd:integer)
dbo:wikiPageRevisionID
  • 981171029 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dct:subject
rdf:type
rdfs:comment
  • Ein Hurwitzpolynom (nach Adolf Hurwitz) ist ein reelles Polynom, dessen Nullstellen alle einen echt negativen Realteil haben. (de)
  • In matematica per polinomio di Hurwitz si intende un polinomio i cui zeri sono posti nella parte sinistra del piano complesso, cioè sono numeri complessi aventi parte reale negativa. Questi polinomi sono così chiamati in onore di Adolf Hurwitz. (it)
  • Um polinômio de Hurwitz (ver Adolf Hurwitz) é um polinômio, cujos coeficientes são números reais positivos, cujos zeros são localizados no semi-plano esquerdo dos números complexos, isto é, a parte real de todas as raízes é negativa. (pt)
  • 赫爾維茨多項式(Hurwitz polynomial)得名自德國數學家阿道夫·赫維茲,是一種特殊的多項式,其係數為正值,而且其根解都在複數平面的左半邊或是在虛軸上,也就是根的實部均為負數或是零。有時此一用語會將多項式根的實部限制為只允許負值,也就是解不能在虛軸上(赫爾維茨穩定多項式)。 若以下二個條件皆成立,複變數s 的多項式P(s)為赫尔维茨多項式: 1. 若s為實數,則P(s)為實數。2. P(s)根的實部均為零或負值。 赫爾維茨多項式在控制系統理論中非常重要,其表示穩定線性非時變系統的特徵多項式。多項式是否赫爾維茨多項式可以直接求解方程式,或是用劳斯–赫尔维茨稳定性判据求得。 (zh)
  • In mathematics, a Hurwitz polynomial, named after Adolf Hurwitz, is a polynomial whose roots (zeros) are located in the left half-plane of the complex plane or on the imaginary axis, that is, the real part of every root is zero or negative. Such a polynomial must have coefficients that are positive real numbers. The term is sometimes restricted to polynomials whose roots have real parts that are strictly negative, excluding the axis (i.e., a Hurwitz stable polynomial). A polynomial function P(s) of a complex variable s is said to be Hurwitz if the following conditions are satisfied: (en)
  • En matemáticas, un polinomio de Hurwitz, nombrado por Adolf Hurwitz, es un polinomio cuyas raíces (ceros) están localizados en el semiplano izquierdo del plano complejo, o en el eje imaginario, esto quiere decir que la parte real de cada raíz es cero o negativa.​​ Tal polinomio debe tener coeficientes que son reales positivos. El término está a veces restringido para polinomios cuyas raíces tengan partes reales estrictamente negativas, excluyendo los ejes (ej. un polinomio estable de Hurwitz).​​ (es)
  • Un polynôme de Hurwitz, ainsi nommé en l'honneur du mathématicien allemand Adolf Hurwitz, est un polynôme d’une variable à coefficients réels dont les racines sont toutes à partie réelle strictement négative. De tels polynômes jouent un rôle important dans la théorie des équations différentielles linéaires à coefficients constants ainsi qu'en automatique, pour l’analyse de la stabilité des systèmes dynamiques. Le critère de Routh-Hurwitz, détaillé plus bas, permet de tester cette stabilité. Il a été obtenu indépendamment par le mathématicien anglais Edward Routh en 1875 et par Hurwitz en 1895 et a été amélioré en 1914 par les mathématiciens français Liénard et Chipart dont le test de stabilité (également détaillé plus bas) est probablement le plus simple et le plus efficace. L'intérêt pour (fr)
rdfs:label
  • Hurwitzpolynom (de)
  • Hurwitz polynomial (en)
  • Polinomio de Hurwitz (es)
  • Polynôme de Hurwitz (fr)
  • Polinomio di Hurwitz (it)
  • Polinômio de Hurwitz (pt)
  • 赫爾維茨多項式 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of