An Entity of Type: organisation, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

Hilbert's paradox of the Grand Hotel (colloquial: Infinite Hotel Paradox or Hilbert's Hotel) is a thought experiment which illustrates a counterintuitive property of infinite sets. It is demonstrated that a fully occupied hotel with infinitely many rooms may still accommodate additional guests, even infinitely many of them, and this process may be repeated infinitely often. The idea was introduced by David Hilbert in a 1924 lecture "Über das Unendliche", reprinted in

Property Value
dbo:abstract
  • مفارقة فندق هيلبرت اللانهائي أو فندق هيلبرت (بالإنجليزية: Hilbert's paradox of the Grand Hotel)‏ هي تجربة فكرية تصف حالة تجاه المجموعات غير المنتهية. توضّح المفارقة أن الفندق الذي يحوي عدد لانهائي من الغرف المشغولة جميعها بالكامل يستطيع استيعاب عدد إضافي من النزلاء، حتى وإن كان عددهم غير منتهٍ، وأن حتى عملية استيعاب الفندق للمزيد من النزلاء من الممكن أن تتكرر عدداً لانهائياً من المرات. قدَم الرياضياتي الألماني ديفيد هيلبرت هذه الفكرة بمحاضرة ألقاها عام 1924م، واشتهرت من نشر جورج جاموف لها بكتابه: واحد اثنان ثلاثة... لانهاية (بالإنجليزية: One Two Three... Infinity)‏. (ar)
  • La paradoxa de Hilbert de l'hotel infinit és una faula inventada pel matemàtic David Hilbert per tal d'il·lustrar les aparents contradiccions que apareixen en tractar amb conjunts infinits. Parteix de la premissa d'un hotel amb tantes habitacions com nombres naturals, totes elles numerades. (ca)
  • El hotel infinito de Hilbert es una construcción abstracta inventada por el matemático alemán David Hilbert. Esta paradoja explica, de manera simple e intuitiva, hechos paradójicos relacionados con el concepto matemático de infinito (más exactamente con los cardinales transfinitos introducidos por el matemático Georg Cantor). Todas las paradojas de Hilbert describen por medio de un hotel de habitaciones infinitas, cuatro paradojas de las encontradas por Georg Cantor. Numerosas personas han creado historias completas sobre la metáfora de David Hilbert.​​​​ (es)
  • L'hôtel de Hilbert, ou hôtel infini de Hilbert, illustre une propriété paradoxale des ensembles infinis en mathématique, qui est que, contrairement à ce qui se passe pour les ensembles finis, une partie stricte peut avoir autant d'éléments que le tout. (fr)
  • Hilbert's paradox of the Grand Hotel (colloquial: Infinite Hotel Paradox or Hilbert's Hotel) is a thought experiment which illustrates a counterintuitive property of infinite sets. It is demonstrated that a fully occupied hotel with infinitely many rooms may still accommodate additional guests, even infinitely many of them, and this process may be repeated infinitely often. The idea was introduced by David Hilbert in a 1924 lecture "Über das Unendliche", reprinted in (en)
  • Il paradosso del Grand Hotel è un celebre paradosso inventato dal matematico David Hilbert per mostrare alcune caratteristiche del concetto di infinito, e le differenze fra operazioni con insiemi finiti ed infiniti. (it)
  • ヒルベルトの無限ホテルのパラドックス(ヒルベルトのむげんホテルのパラドックス、英: Hilbert's Infinite Hotel Paradox)とは、無限集合の非直観的な性質を説明する思考実験である。無限個の客室があるホテルは「満室」でも(無限人の)新たな客を泊めることができ、その手順を無限に繰り返せることを示す。論理的・数学的に正しいが、直観に反するという意味でのパラドックス(擬似パラドックス)である。ヒルベルトのグランドホテルのパラドックス(英: Hilbert's paradox of the Grand Hotel)、ヒルベルトホテル(英: Hilbert's Hotel)とも。1924年にダフィット・ヒルベルトが論文「Über das Unendliche(無限について)」で導入し、1947年のジョージ・ガモフの著書「1、2、3…無限大」によって広まった。 簡単のため、以下の記述では無限とは可算無限を意味するものとする。しかし選択公理を仮定すれば、任意の無限集合は可算無限集合を部分集合にもつため、非可算無限の場合でも少し議論を修正するだけでよい。 (ja)
  • Hilberts hotel is een verzonnen hotel met paradoxale eigenschappen, dat David Hilbert bedacht om het idee van een getal dat groter is dan alle andere getallen (transfiniet getal) uit te leggen. Hilbert kwam met zijn hotel in zijn college Über das Unendliche uit 1924. Het werd breder bekend door George Gamows boek One Two Three... Infinity. Facts and Speculations of Science. uit 1947. (nl)
  • Paradoks Hilberta – paradoks opisany przez Davida Hilberta w celu ilustracji trudności w intuicyjnym rozumieniu pojęcia "ilości" elementów zbioru z nieskończoną liczbą elementów. Paradoks ten znany jest też pod nazwą paradoksu Grand Hotelu lub paradoksu hotelu Hilberta. Wyobraźmy sobie, że jesteśmy portierem w Grand Hotelu, w którym jest nieskończona liczba pokoi. Wszystkie pokoje są już zajęte, gdy przychodzi do nas kolejny klient chcący wynająć pokój. Wydawałoby się, że sytuacja jest bez wyjścia i musimy klienta odprawić z kwitkiem. Na szczęście nasz hotel ma nieskończoną liczbę pokoi, więc możemy wykonać sprytny trik: klienta z pokoju numer 1 przekwaterujemy do pokoju nr 2, tego z pokoju nr 2 do pokoju nr 3, itd. Ogólnie można powiedzieć, że dokonujemy przekwaterowania klientów z pokojów n do pokojów n+1. W ten sposób wszyscy nasi wcześniejsi klienci mają gdzie mieszkać, a my mamy wolny pokój nr 1, do którego możemy zakwaterować naszego nowego gościa. Tak więc, mimo że hotel był pełen, znalazło się miejsce dla nowego klienta... Będąc portierem w naszym nieskończonym hotelu mamy jeszcze więcej możliwości. Nawet jeśli przyjedzie do nas nieskończona (ale przeliczalna) liczba autobusów z nieskończoną (przeliczalną) liczbą klientów w każdym z nich, to nadal możemy ich wszystkich zakwaterować dokonując kolejnego, nieco bardziej złożonego triku z zamianami pokojów: najpierw trzeba opróżnić pokoje hotelowe z nieparzystym numerem poprzez chwilowe umieszczenie ich gości w np. autobusie nr 1. Klientów z autobusu nr 1 umieszczamy tymczasem w pokojach z numerami 3n, gdzie n to np. numery miejsc w autobusie (wszystkie te pokoje będą nieparzyste, czyli już wcześniej opróżnione). Potem umieszczamy klientów z autobusu 2 w pokojach o numerach 5n. Następny autobus pójdzie do pokojów 7n. Ogólnie, będziemy umieszczali klientów kolejnych autobusów w pokojach m(n)n, gdzie m(n) to kolejne liczby pierwsze. Potęgi liczb pierwszych większych od 2 są nieparzyste, a że zbiory kolejnych potęg liczb pierwszych są parami rozłączne, więc nie ma ryzyka, że poślemy nowych klientów do już zajętych pokojów. Wreszcie klientów, wcześniej wykwaterowanych z pokojów nieparzystych, wysyłamy do pokojów o numerach m(n+1)n i wszyscy są już rozlokowani. Opisany tu paradoks nie jest sprzeczny z logiką, lecz tylko z intuicyjnym pojmowaniem liczby elementów w zbiorach nieskończonych. Pokazuje on tylko, że moc przeliczalnych zbiorów nieskończonych jest zawsze jednakowa, nawet wtedy, gdy dany zbiór jest podzbiorem innego zbioru. Np. zbiór liczb nieparzystych dodatnich ma taką samą moc (jest równoliczny) ze zbiorem liczb naturalnych, mimo że jest jego podzbiorem. (pl)
  • O paradoxo do Hotel de Hilbert é um experimento mental matemático sobre conjuntos infinitos apresentado pelo matemático alemão David Hilbert (1862-1943). É chamado de paradoxo pois o resultado é contra-intuitivo. (pt)
  • Hilberts hotell är ett paradoxalt resultat som gäller ett fiktivt hotell, påhittat av matematikern David Hilbert i syfte att illustrera oändlighetsbegreppet. (sv)
  • Парадокс Гільберта про Grand Hotel (великий готель) — це математичний достовірний парадокс (несуперечливе припущення, що є дуже нелогічним) про нескінченні множини, що його представив німецький математик Давид Гільберт (1862—1943). Давид Гільберт розробив цей парадокс в 1920-х роках, щоб проілюструвати таємничі властивості нескінченності. Парадокс полягає в тому, що в повністю заселений нескінченно великий готель можна додатково заселити нескінченну кількість гостей. (uk)
  • Парадокс «Гранд-отель» — мысленный эксперимент, иллюстрирующий свойства бесконечных множеств. Он демонстрирует отель с бесконечным количеством комнат, в каждой из которых находится постоялец. При этом в гостиницу всегда можно подселить ещё посетителей, даже если их бесконечное множество. Впервые парадокс был сформулирован немецким математиком Давидом Гильбертом в 1924 году и популяризирован в книге Георгия Гамова «Раз, два, три… бесконечность» в 1947 году. (ru)
  • 希尔伯特旅馆悖论是一个与无限集合有关的数学悖论,由德国数学家大卫·希尔伯特提出。 (zh)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 37797 (xsd:integer)
dbo:wikiPageLength
  • 16970 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1024524546 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dct:subject
gold:hypernym
rdf:type
rdfs:comment
  • مفارقة فندق هيلبرت اللانهائي أو فندق هيلبرت (بالإنجليزية: Hilbert's paradox of the Grand Hotel)‏ هي تجربة فكرية تصف حالة تجاه المجموعات غير المنتهية. توضّح المفارقة أن الفندق الذي يحوي عدد لانهائي من الغرف المشغولة جميعها بالكامل يستطيع استيعاب عدد إضافي من النزلاء، حتى وإن كان عددهم غير منتهٍ، وأن حتى عملية استيعاب الفندق للمزيد من النزلاء من الممكن أن تتكرر عدداً لانهائياً من المرات. قدَم الرياضياتي الألماني ديفيد هيلبرت هذه الفكرة بمحاضرة ألقاها عام 1924م، واشتهرت من نشر جورج جاموف لها بكتابه: واحد اثنان ثلاثة... لانهاية (بالإنجليزية: One Two Three... Infinity)‏. (ar)
  • La paradoxa de Hilbert de l'hotel infinit és una faula inventada pel matemàtic David Hilbert per tal d'il·lustrar les aparents contradiccions que apareixen en tractar amb conjunts infinits. Parteix de la premissa d'un hotel amb tantes habitacions com nombres naturals, totes elles numerades. (ca)
  • El hotel infinito de Hilbert es una construcción abstracta inventada por el matemático alemán David Hilbert. Esta paradoja explica, de manera simple e intuitiva, hechos paradójicos relacionados con el concepto matemático de infinito (más exactamente con los cardinales transfinitos introducidos por el matemático Georg Cantor). Todas las paradojas de Hilbert describen por medio de un hotel de habitaciones infinitas, cuatro paradojas de las encontradas por Georg Cantor. Numerosas personas han creado historias completas sobre la metáfora de David Hilbert.​​​​ (es)
  • L'hôtel de Hilbert, ou hôtel infini de Hilbert, illustre une propriété paradoxale des ensembles infinis en mathématique, qui est que, contrairement à ce qui se passe pour les ensembles finis, une partie stricte peut avoir autant d'éléments que le tout. (fr)
  • Hilbert's paradox of the Grand Hotel (colloquial: Infinite Hotel Paradox or Hilbert's Hotel) is a thought experiment which illustrates a counterintuitive property of infinite sets. It is demonstrated that a fully occupied hotel with infinitely many rooms may still accommodate additional guests, even infinitely many of them, and this process may be repeated infinitely often. The idea was introduced by David Hilbert in a 1924 lecture "Über das Unendliche", reprinted in (en)
  • Il paradosso del Grand Hotel è un celebre paradosso inventato dal matematico David Hilbert per mostrare alcune caratteristiche del concetto di infinito, e le differenze fra operazioni con insiemi finiti ed infiniti. (it)
  • ヒルベルトの無限ホテルのパラドックス(ヒルベルトのむげんホテルのパラドックス、英: Hilbert's Infinite Hotel Paradox)とは、無限集合の非直観的な性質を説明する思考実験である。無限個の客室があるホテルは「満室」でも(無限人の)新たな客を泊めることができ、その手順を無限に繰り返せることを示す。論理的・数学的に正しいが、直観に反するという意味でのパラドックス(擬似パラドックス)である。ヒルベルトのグランドホテルのパラドックス(英: Hilbert's paradox of the Grand Hotel)、ヒルベルトホテル(英: Hilbert's Hotel)とも。1924年にダフィット・ヒルベルトが論文「Über das Unendliche(無限について)」で導入し、1947年のジョージ・ガモフの著書「1、2、3…無限大」によって広まった。 簡単のため、以下の記述では無限とは可算無限を意味するものとする。しかし選択公理を仮定すれば、任意の無限集合は可算無限集合を部分集合にもつため、非可算無限の場合でも少し議論を修正するだけでよい。 (ja)
  • Hilberts hotel is een verzonnen hotel met paradoxale eigenschappen, dat David Hilbert bedacht om het idee van een getal dat groter is dan alle andere getallen (transfiniet getal) uit te leggen. Hilbert kwam met zijn hotel in zijn college Über das Unendliche uit 1924. Het werd breder bekend door George Gamows boek One Two Three... Infinity. Facts and Speculations of Science. uit 1947. (nl)
  • O paradoxo do Hotel de Hilbert é um experimento mental matemático sobre conjuntos infinitos apresentado pelo matemático alemão David Hilbert (1862-1943). É chamado de paradoxo pois o resultado é contra-intuitivo. (pt)
  • Hilberts hotell är ett paradoxalt resultat som gäller ett fiktivt hotell, påhittat av matematikern David Hilbert i syfte att illustrera oändlighetsbegreppet. (sv)
  • Парадокс Гільберта про Grand Hotel (великий готель) — це математичний достовірний парадокс (несуперечливе припущення, що є дуже нелогічним) про нескінченні множини, що його представив німецький математик Давид Гільберт (1862—1943). Давид Гільберт розробив цей парадокс в 1920-х роках, щоб проілюструвати таємничі властивості нескінченності. Парадокс полягає в тому, що в повністю заселений нескінченно великий готель можна додатково заселити нескінченну кількість гостей. (uk)
  • Парадокс «Гранд-отель» — мысленный эксперимент, иллюстрирующий свойства бесконечных множеств. Он демонстрирует отель с бесконечным количеством комнат, в каждой из которых находится постоялец. При этом в гостиницу всегда можно подселить ещё посетителей, даже если их бесконечное множество. Впервые парадокс был сформулирован немецким математиком Давидом Гильбертом в 1924 году и популяризирован в книге Георгия Гамова «Раз, два, три… бесконечность» в 1947 году. (ru)
  • 希尔伯特旅馆悖论是一个与无限集合有关的数学悖论,由德国数学家大卫·希尔伯特提出。 (zh)
  • Paradoks Hilberta – paradoks opisany przez Davida Hilberta w celu ilustracji trudności w intuicyjnym rozumieniu pojęcia "ilości" elementów zbioru z nieskończoną liczbą elementów. Paradoks ten znany jest też pod nazwą paradoksu Grand Hotelu lub paradoksu hotelu Hilberta. (pl)
rdfs:label
  • مفارقة فندق هيلبرت (ar)
  • Hotel infinit (ca)
  • Hilberts Hotel (de)
  • Hilbert's paradox of the Grand Hotel (en)
  • Hotelo de Hilbert (eo)
  • El hotel infinito de Hilbert (es)
  • Hôtel de Hilbert (fr)
  • ヒルベルトの無限ホテルのパラドックス (ja)
  • Paradosso del Grand Hotel di Hilbert (it)
  • 힐베르트 호텔 (ko)
  • Hilberts hotel (nl)
  • Paradoks Hilberta (pl)
  • Hotel de Hilbert (pt)
  • Парадокс «Гранд-отель» (ru)
  • Hilberts hotell (sv)
  • Парадокс Гільберта (uk)
  • 希尔伯特旅馆悖论 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License