An Entity of Type: place, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

A Gaussian fixed point is a fixed point of the renormalization group flow which is noninteracting in the sense that it is described by a free field theory. The word Gaussian comes from the fact that the probability distribution is Gaussian at the Gaussian fixed point. This means that Gaussian fixed points are exactly solvable (trivially solvable in fact). Slight deviations from the Gaussian fixed point can be described by perturbation theory.

Property Value
dbo:abstract
  • A Gaussian fixed point is a fixed point of the renormalization group flow which is noninteracting in the sense that it is described by a free field theory. The word Gaussian comes from the fact that the probability distribution is Gaussian at the Gaussian fixed point. This means that Gaussian fixed points are exactly solvable (trivially solvable in fact). Slight deviations from the Gaussian fixed point can be described by perturbation theory. (en)
dbo:wikiPageID
  • 3852580 (xsd:integer)
dbo:wikiPageLength
  • 1155 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1119141565 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dct:subject
gold:hypernym
rdf:type
rdfs:comment
  • A Gaussian fixed point is a fixed point of the renormalization group flow which is noninteracting in the sense that it is described by a free field theory. The word Gaussian comes from the fact that the probability distribution is Gaussian at the Gaussian fixed point. This means that Gaussian fixed points are exactly solvable (trivially solvable in fact). Slight deviations from the Gaussian fixed point can be described by perturbation theory. (en)
rdfs:label
  • Gaussian fixed point (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License