In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers a, b, and c satisfy the equation an + bn = cn for any integer value of n greater than 2. The cases n = 1 and n = 2 have been known since antiquity to have infinitely many solutions.

Property Value
dbo:abstract
  • في نظرية الأعداد، تنص مبرهنة فيرما الأخيرة (بالإنجليزية: Fermat's Last Theorem) على أنه لا توجد أعداد صحيحة طبيعية x و y و z حيث: حيث n أكبر قطعا من 2. حُدست هذه الحدسية لأول مرة من طرف بيير دي فيرما عام 1637، كما اشتهر، على هامش نسخة من كتاب للحسابيات، حيث زعم أن له برهانا أكبر من أن يسعه ذلك الهامش. لم ينشر لهذه الحدسية برهان صحيح حتى عام 1995 على يد أندرو وايلز، رغم جهود عدد غير منته من علماء الرياضيات خلال 358 سنة مرت على حدسها. هذه المعضلة المستعصية على الحل حثت على تطور نظرية الأعداد الجبرية خلال القرن التاسع عشر كما أدت إلى البرهان على مبرهنة النمطية خلال القرن العشرين. تعد واحدة من أكثر المبرهنات شهرة في تاريخ الرياضيات، و كانت قبل برهان وايلز عليها عام 1995، مسجلة في موسوعة غينيس للأرقام القياسية تحت عنوان: أصعب معضلة في الرياضيات. (ar)
  • Velká Fermatova věta je jedna z nejslavnějších vět v historii matematiky. Zní takto: Neexistují celá kladná čísla x, y, z a n, kde n > 2, pro která . Větu si v 17. století francouzský matematik Pierre de Fermat poznamenal na okraj knihy v této podobě: Cubum autem in duos cubos, aut quadrato-quadratum in duos quadrato-quadratos, et generaliter nullam in infinitum ultra quadratum potestatem in duos eiusdem nominis fas est dividere cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exigitas non caperet. (Je nemožné rozdělit krychli do dvou krychlí, či čtvrtou mocninu do dvou čtvrtých mocnin, nebo obecně jakoukoli mocninu vyšší než druhou do dvou stejných mocnin. Objevil jsem opravdu tak podivuhodný důkaz, že tento okraj je příliš malý, aby se do něj vešel.) Uvedený důkaz ovšem nebyl v jeho pozůstalosti objeven – víme, že Fermat našel důkaz pro mocnitel čtyři, ale nejspíše nikoli pro jiné exponenty. Elementárně lze zjistit, že větu stačí dokázat „jen“ pro všechny prvočíselné mocnitele a čtyřku. Během následujících staletí se podařilo dokázat některé další zvláštní případy věty (např. Euler dokázal případ s mocnitelem tři), ovšem definitivní důkaz pokrývající Fermatovo tvrzení v celé jeho obecnosti získal britský matematik Andrew Wiles až roku 1994 a jedná se o jeden z nejsložitějších důkazů v historii matematiky.Přestože sama Velká Fermatova věta nemá pro matematiku zásadní význam, důkaz, který Andrew Wiles vytvořil, je neocenitelný pro celý matematický svět. Kvůli důkazu muselo být sjednoceno mnoho matematických myšlenek a teorií a ještě více muselo být vytvořeno. A právě řada těchto postupů si uplatnění v moderní vědě našla a umožnila další výzkumy. Andrew Wiles dal také matematickému světu novou naději, když dokázal Tanijamovu-Šimurovu domněnku, která spojuje eliptické křivky a , což jsou dvě odvětví matematiky s naprosto různými principy a přístupy k problémům, avšak při bližším pohledu vykazují mnohé spojitosti a společné vlastnosti. Tím, že Wiles dokázal, že modulární formy a eliptické křivky jsou ekvivalentní, a tedy dokázal i Tanijamovu-Šimurovu domněnku, dal matematikům šanci na splnění – tedy vytvoření velké sjednocené matematiky. O Fermatově problému a jeho řešení byla do češtiny přeložena kniha. (cs)
  • El darrer teorema de Fermat, conegut actualment també com teorema de Wiles-Fermat, afirma que l'equació diofàntica no té cap solució entera per a n > 2 i essent x, y i z diferents de zero. És un dels teoremes més famosos de la història de les matemàtiques i fins a l'any 1995 no es disposava d'una demostració (i, per tant, en rigor s'havia d'anomenar conjectura de Fermat). Fixem-nos que quan n = 2 l'equació equival al teorema de Pitàgores i òbviament té infinites solucions. El matemàtic francès Pierre de Fermat fou el primer a proposar el teorema, però malauradament la demostració que suposadament havia realitzat no s'ha trobat mai. Fermat només va deixar escrit en un marge de la seva còpia de l'Aritmètica de Diofant el plantejament del teorema i l'afirmació que havia trobat una demostració del teorema. En les seves pròpies paraules: Cubum autem in duos cubos, aut quadrato-quadratum in duos quadrato-quadratos, et generaliter nullam in infinitum ultra quadratum potestatem in duos eiusdem nominis fas est dividere cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet és a dir, «És impossible que un cub sigui la suma de dos cubs, que una potència quarta sigui la suma de dues potències quartes i, en general, que qualsevol nombre que sigui una potència superior a dos sigui la suma de dues potències del mateix valor. He descobert una demostració veritablement meravellosa d'aquesta proposició, però aquest marge és massa estret perquè hi càpiga.» L'afirmació de Fermat va esdevenir immediatament un problema que molts matemàtics van intentar resoldre. De mica en mica van anar sorgint demostracions parcials (per exemple, Sophie Germain demostrà el teorema en el cas en què n és un nombre primer i 2n + 1 també ho és) o demostracions de teoremes associats a aquest. També es demostrà el teorema per a valors molt determinats de n: Euler el demostrà per a n = 3, el mateix Fermat deixà constància de la seva demostració per a n = 4, Legendre i Dirichlet per a n = 5 i aquest darrer també per a n = 14. El 1993 Andrew Wiles anuncià la demostració general del teorema, demostració que resultà errònia, però que ell mateix corregí vers la fi de 1994. Amb aquesta demostració, que implica l'ús de funcions el·líptiques i , un dels més famosos problemes de la matemàtica quedava tancat. Nogensmenys, val la pena preguntar-se si realment Fermat aconseguí una demostració del seu teorema i, en cas afirmatiu, quin mètode utilitzà, ja que el camí seguit per Wiles utilitza eines matemàtiques inexistents a l'època de Fermat. (ca)
  • Στη θεωρία αριθμών, το τελευταίο θεώρημα του Φερμά (ορισμένες φορές ονομάζεται Υπόθεση του Φερμά, κυρίως σε παλαιότερα κείμενα) διατυπώνεται ως εξής: τρεις θετικοί ακέραιοι αριθμοί a, b, και c δεν μπορούν να ικανοποιήσουν την εξίσωση an + bn = cn για κάθε ακέραιο αριθμό n μεγαλύτερο από το δύο. Επομένως, χωρίς τη χρήση μαθηματικών συμβόλων μπορεί να εκφραστεί: Είναι αδύνατον να χωρίσεις οποιαδήποτε δύναμη μεγαλύτερη της δεύτερης σε δύο ίδιες δυνάμειςΤο θεώρημα αυτό διατυπώθηκε πρώτη φορά το 1637 από τον Φερμά, με τη μορφή χειρόγραφης σημείωσης σε ένα βιβλίο (συγκεκριμένα στα Αριθμητικά του Διόφαντου), όπου ο ίδιος ισχυρίστηκε ότι έχει την απόδειξη του θεωρήματος αλλά είναι τόσο μεγάλη που δεν χωρούσε στη σημείωση. Καμία επιτυχής απόδειξη δεν δημοσιεύθηκε μέχρι το 1995, παρά τις προσπάθειες των αμέτρητων μαθηματικών κατά τα 358 χρόνια που μεσολάβησαν. Το άλυτο αυτό πρόβλημα συνδέεται άμεσα με την πρόοδο της αλγεβρικής θεωρίας αριθμών το 19ο αιώνα. Είναι ένα από τα πιο γνωστά θεωρήματα στην ιστορία των μαθηματικών και πριν την απόδειξη του 1995 από τους μαθηματικούς Άντριου Γουάιλς και βρισκόταν στο Βιβλίο Γκίνες ως το "πιο δύσκολο μαθηματικό πρόβλημα". (el)
  • La lasta teoremo de Fermat estas unu el la plej famaj teoremoj pri nombroteorio en la historio de la matematiko. Ĝi asertas, ke se n estas natura nombro pli granda ol 2, tiam ne ekzistas pozitivaj plenaj nombroj x, y kaj z, kiuj validigas la egalaĵon xn + yn = zn. Tiun ĉi teoremon unue konjektis Pierre de Fermat en 1637, en marĝeno de kopio de , kie li asertis ke li havas pruvon sed ne povas skribi ĝin en la marĝenon ĉar ĝi estas tro longa. Dum longa tempo matematikistoj klopodis pruvi la teoremon, kaj finfine Andrew Wiles sukcesis pruvi ĝin per modernaj metodoj nekoneblaj al Fermat en 1994. Ĉar multaj homoj provis pruvi la teoremon kaj estis trovita neniu pruvo, kiun Fermat povus koni, estas ĝenerala konsento nun ke Fermat fakte ne havis validan pruvon por la teoremo. (eo)
  • En teoría de números, el último teorema de Fermat, o teorema de Fermat-Wiles, es uno de los teoremas más famosos en la historia de la matemática. Utilizando la notación moderna, se puede enunciar de la siguiente manera: Este teorema fue conjeturado por Pierre de Fermat en 1637, pero no fue demostrado hasta 1995 por Andrew Wiles ayudado por el matemático Richard Taylor. La búsqueda de una demostración estimuló el desarrollo de la teoría algebraica de números en el siglo XIX y la demostración del teorema de la modularidad en el siglo XX. (es)
  • Der Große Fermatsche Satz wurde im 17. Jahrhundert von Pierre de Fermat formuliert, aber erst 1994 von Andrew Wiles bewiesen. Als schlüssiger Höhepunkt für den Beweis gilt die Zusammenarbeit von Wiles mit Richard Taylor, die sich neben dem endgültigen Beweis durch Wiles in einer gleichzeitigen Veröffentlichung eines Teilbeweises von beiden, Wiles und Taylor, als gemeinsame Autoren niederschlug. Der Satz besagt: Ist eine natürliche Zahl größer als 2, so kann die -te Potenz jeder natürlichen Zahl ungleich null nicht in die Summe zweier -ter Potenzen natürlicher Zahlen ungleich null zerlegt werden. Formal bedeutet dies: Die Gleichung ist für positive ganze Zahlen unlösbar, wenn größer als zwei ist. Der Große Fermatsche Satz gilt in vielerlei Hinsicht als ungewöhnlich. Seine Aussage ist, trotz der Schwierigkeiten, die sich bei seinem Beweis ergaben, auch für Laien leicht verständlich. Es dauerte mehr als 350 Jahre und war eine Geschichte der gescheiterten Versuche, an denen sich seit Leonhard Euler zahlreiche führende Mathematiker wie etwa Ernst Eduard Kummer beteiligt haben. Zahlreiche teils romantische, teils dramatische, aber auch tragische Episoden dieser Geschichte haben ihn weit über den Kreis der Mathematiker hinaus populär gemacht. Der schließlich erbrachte Beweis, an dessen Vorarbeiten neben Wiles und Taylor auch Gerhard Frey, Jean-Pierre Serre, Barry Mazur und Ken Ribet beteiligt waren, gilt als Höhepunkt der Mathematik des 20. Jahrhunderts. (de)
  • Fermaten azken teorema zenbakien teoriaren teoremarik ospetsuenetako bat da. Era honetan adierazi zuen Pierre de Fermat XVII. mendeko frantziar matematikariak: ekuazioko berretzailea 3 edo zenbaki handiagoa denean, zenbaki oso eta positiboko soluziorik ez du Aurreko hau Fermatek Diofanto greziarraren Arithmetica liburuaren ertz batean idatzi zuen eta, aldi berean, frogapena bertan kabitzen ez zitzaiola ere esan zuen. Hirurehun urte luzez matematikari asko saiatu zen baieztapen hori frogatzen. Nahiz eta teoria matematiko ederrak eraiki, ez zen erabateko frogapenik lortu, emaitza partzialak baizik. Azkenik, 1994an, Andrew Wiles matematikari ingelesak erakutsi zuen teoremaren frogapena, eta 1995ean argitaratu zuen. Wilesek ez zuen zuzenean Fermaten teorema frogatu, baizik; duela urte batzuk Fermaten teorema aieru horren ondorio zela ikusi baitzen. Emaitza denbora luzez gorde zuen isilpean, ongi egiaztatu gabe kaleratu nahi izan ez zuelako. (eu)
  • Timpeall 1637 scríobh an matamaiticeoir Pierre de Fermat go raibh sé tar éis a chruthú nárbh fhéidir aon slánuimhir n níos mó ná 2 a aimsiú a chomhlíonfadh an chothromóid xn + yn = zn, sa chás gur slánuimhreacha iad x, y is z. (Más n = 2, is ionann an chothromóid seo is teoirim Phíotágaráis). Cailleadh a chruthú. Bhí an teoirim ina sprioc dhoshroichte sa mhatamaitic leis na céadta bliain. Faoi dheireadh, i lár na 1990idí léirigh matamaiticeoir Sasanach, Andrew Wiles, cruthú fada casta a shásaigh na matamaiticeoirí. (ga)
  • Teorema Terakhir Fermat (Inggris: Fermat's Last Theorem) adalah salah satu teorema paling terkenal dalam matematika, dicetuskan oleh Pierre de Fermat pada abad ke-17. Teorema ini mengatakan: Pada tahun 1637, Fermat menulis teorema tersebut pada pinggiran salah satu halaman bukunya. Ia mengklaim telah menemukan bukti dari teori tersebut, hanya saja ia tidak bisa menuliskannya karena pinggiran halaman bukunya tidak muat lagi. Akan tetapi, selama 357 tahun berikutnya, para matematikawan dunia tidak dapat membuktikannya, dan teorema ini menjadi salah satu teka-teki terbesar dalam matematika. Akhirnya, pada tahun 1994, matematikawan Inggris bernama Andrew Wiles berhasil membuktikan kebenaran teorema ini. (in)
  • L'ultimo teorema di Fermat (più correttamente definibile come ultima congettura di Fermat, non essendo dimostrata all'epoca) affermò che non esistono soluzioni intere positive all'equazione: se . (it)
  • En mathématiques, et plus précisément en théorie des nombres, le dernier théorème de Fermat, ou grand théorème de Fermat, ou depuis sa démonstration théorème de Fermat-Wiles, s'énonce comme suit : Théorème — Il n'existe pas de nombres entiers strictement positifs x, y et z tels que : dès que n est un entier strictement supérieur à 2. Énoncé par Pierre de Fermat d'une manière similaire dans une note marginale de son exemplaire d'un livre de Diophante, il a cependant attendu plus de trois siècles une preuve publiée et validée, établie par le mathématicien britannique Andrew Wiles en 1994. C'est surtout par les idées qu'il a fallu mettre en œuvre pour le démontrer, par les outils qui ont été mis en place pour ce faire, qu'il a pris une valeur considérable. (fr)
  • フェルマーの最終定理(フェルマーのさいしゅうていり、Fermat's Last Theorem)とは、3 以上の自然数 n について、xn + yn = zn となる自然数の組 (x, y, z) は存在しない、という定理のことである。フェルマーの大定理とも呼ばれる。ピエール・ド・フェルマーが驚くべき証明を得たと書き残したと伝えられ、長らく証明も反証もなされなかったことからフェルマー予想とも称されたが、フェルマーの死後360年経った1995年にアンドリュー・ワイルズによって完全に証明され、ワイルズの定理あるいはフェルマー・ワイルズの定理とも呼ばれるようになった。 (ja)
  • In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers a, b, and c satisfy the equation an + bn = cn for any integer value of n greater than 2. The cases n = 1 and n = 2 have been known since antiquity to have infinitely many solutions. The proposition was first conjectured by Pierre de Fermat around 1637 in the margin of a copy of Arithmetica; Fermat added that he had a proof that was too large to fit in the margin. However, there were doubts that he had a correct proof because his claim was published by his son without his consent and after his death. After 358 years of effort by mathematicians, the first successful proof was released in 1994 by Andrew Wiles, and formally published in 1995; it was described as a "stunning advance" in the citation for Wiles's Abel Prize award in 2016. It also proved much of the modularity theorem and opened up entire new approaches to numerous other problems and mathematically powerful modularity lifting techniques. The unsolved problem stimulated the development of algebraic number theory in the 19th century and the proof of the modularity theorem in the 20th century. It is among the most notable theorems in the history of mathematics and prior to its proof was in the Guinness Book of World Records as the "most difficult mathematical problem" in part because the theorem has the largest number of unsuccessful proofs. (en)
  • 페르마의 마지막 정리(영어: Fermat’s last theorem)는 정수론에서 3 이상 지수의 거듭제곱수는 같은 지수의 두 거듭제곱수의 합으로 나타낼 수 없다는 정리이다. 즉, 가 양의 정수이고, 이 3 이상의 정수일 때, 항상 이다. 이 정리는 1637년 프랑스의 유명한 수학자였던 피에르 드 페르마가 처음으로 추측하였다. 수많은 수학자들이 이를 증명하기 위해서 노력하였으나 실패하였다. 페르마가 자신의 추측을 기록한지 358년이 지난 1995년에 이르러서야 영국의 저명한 수학자인 앤드루 와일스에게 증명되었다. 이 방법이 페르마가 살던 시기에는 발견되지 않은 데다가 매우 복잡하기 때문에 수학자들은 페르마가 다른 방법으로 증명했거나 증명에 실패했다고 추측한다. 이 정리를 증명하기 위한 수학자들의 각고의 노력 덕분에 19세기 대수적 수론이 발전했고 20세기에 모듈러성 정리가 증명되었다. 앤드루 와일스의 증명은 기네스북에서 가장 어려운 수학 문제로 등재되었다. 사실 이 문제는 고대 그리스의 저명한 수학자인 피타고라스가 증명한 피타고라스 정리가 세제곱, 네제곱 등에서도 성립할까라는 질문에서 시작되었다고 한다. (ko)
  • De laatste stelling van Fermat, ook wel de grote stelling van Fermat genoemd en niet te verwarren met de zogenaamde kleine stelling van Fermat, is een beroemde wiskundige stelling opgesteld door Pierre de Fermat die zegt dat het onmogelijk is een macht hoger dan de tweede op te delen in twee machten met diezelfde graad. In wiskundige notatie: voor heeft de vergelijking geen oplossing met natuurlijke getallen en ongelijk aan 0. Van het van de stelling van Pythagoras bekende geval met oneindig veel oplossingen, de zogenaamde pythagoreïsche drietallen, maakte hij een vergelijking die, zo stelde hij, voor geen enkele oplossing verschillend van nul heeft. De stelling werd door Fermat in 1637 opgeschreven in de marge van zijn exemplaar van Claude-Gaspard Bachet's vertaling van Diophantus' klassieke werk Arithmetica. Hij schreef in het Latijn: Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et generaliter nullam in infinitum ultra quadratum potestatem in duas eiusdem nominis fas est dividere cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet.Het is onmogelijk een derde macht op te splitsen in twee derde machten, of een vierde macht in twee vierde machten, of in het algemeen elke macht hoger dan de tweede in twee machten met diezelfde graad: voor welke stelling ik waarlijk een spectaculair bewijs heb gevonden. Deze marge is te smal om het te bevatten. Men is nooit zeker geweest over het bestaan van dit bewijs, laat staan van de juistheid ervan. Tegenwoordig wordt wel algemeen aangenomen dat, als Fermat al dacht het bewezen te hebben, zijn bewijs onjuist was. In 1670 verscheen een nieuwe editie van Arithmetica met aantekeningen van Fermat, na zijn dood verzameld door zijn zoon. Deze aantekeningen bestonden uit heel wat 'stellingen', die beter vermoedens genoemd kunnen worden zolang ze niet bewezen zijn, maar de meeste ervan zonder het bewijs erbij. De wiskundige gemeenschap probeerde de ontbrekende bewijzen te vinden, maar dat lukte niet in alle gevallen. In één geval, over zogenaamde Fermat-priemgetallen, bleek het vermoeden van Fermat zelfs onjuist. (nl)
  • Wielkie twierdzenie Fermata – twierdzenie, które brzmi: dla liczby naturalnej nie istnieją takie liczby naturalne dodatnie które spełniałyby równanie Pierre de Fermat zanotował je na marginesie łacińskiego tłumaczenia książki Arithmetica Diofantosa i opatrzył następującą uwagą: znalazłem zaiste zadziwiający dowód tego twierdzenia. Niestety, margines jest zbyt mały, by go pomieścić, lub w innej wersji: Jest niemożliwe rozłożyć sześcian na dwa sześciany, czwartą potęgę na dwie czwarte potęgi i ogólnie potęgę wyższą niż druga na dwie takie potęgi; znalazłem naprawdę zadziwiający dowód tego, jednak margines jest za mały, by go pomieścić. (pl)
  • O Último Teorema de Fermat é um famoso teorema matemático conjecturado pelo matemático francês Pierre de Fermat em 1637. Trata-se de uma generalização do famoso Teorema de Pitágoras, que diz "a soma dos quadrados dos catetos é igual ao quadrado da hipotenusa": () Ao propor seu teorema, Fermat substituiu o expoente 2 na fórmula de Pitágoras por um número natural maior do que 2 (), e afirmou que, nesse caso, a equação não tem solução, se n for um inteiro maior do que 2 e (x,y,z) naturais (inteiros > 0). Fermat relatou ter desenvolvido um teorema para provar essa hipótese, mas nunca o publicou. Assim, esta conjectura ficou por demonstrar e constituiu um verdadeiro desafio para os matemáticos ao longo dos tempos, apesar de parecer simples e o enunciado ser fácil de entender. Desta forma, ele passou a ser conhecido como o mais famoso e duradouro teorema matemático de seu tempo, sendo solucionado apenas em 1995 (pelo britânico Andrew Wiles, com a ajuda de Richard Taylor), após 358 anos de sua formulação. Por isso, este teorema passou a ser chamado também por Teorema de Fermat-Wiles. Em 1995, o teorema foi incluído no Guinness Book como "o mais intricado problema matemático da história". A busca pela solução do teorema propiciou a criação da Teoria algébrica dos números, no século XIX, e do Teorema de Shimura-Taniyama-Weil no século XX. Por isso, segundo a revista Super Interessante, "apesar de diretamente o teorema não ter efeitos práticos para a humanidade, indiretamente, a secular busca dessas fórmula mítica permitiu o desenvolvimento de inúmeras poderosas e sofisticadas ferramentas de trabalho que enriqueceram bastante a matemática moderna." (pt)
  • Вели́кая теоре́ма Ферма́ (или Последняя теорема Ферма) — одна из самых популярных теорем математики. Её условие формулируется просто, на «школьном» арифметическом уровне, однако доказательство теоремы искали многие математики более трёхсот лет. Доказана в 1994 году Эндрю Уайлсом с коллегами (доказательство опубликовано в 1995 году). (ru)
  • Fermats stora sats, även Fermats sista sats, Fermats gåta eller Fermats teorem, är en sats av talteori uppkallad efter Pierre de Fermat som formulerades 1637, men som inte bevisades förrän 1995. (sv)
  • 費馬大定理(亦名费马最后定理,法語:Le dernier théorème de Fermat,英語:Fermat's Last Theorem),其概要為: 当整數时,关于, , 的不定方程 没有正整数解。 以上陳述由17世纪法国数学家费马提出,一直被稱為「费马猜想」,直到英國數學家安德魯·懷爾斯(Andrew John Wiles)及其學生理查·泰勒(Richard Taylor)於1995年將他們的證明出版後,才稱為「費馬最后定理」。這個猜想最初出現費馬的《》中。儘管費馬表明他已找到一個精妙的證明而頁邊没有足夠的空位寫下,但仍然經過數學家們三個多世紀的努力,猜想才變成了定理。在衝擊這個数论世紀难题的過程中,無論是不完全的還是最後完整的證明,都給數學界帶來很大的影響;很多的數學結果、甚至數學分支在這個過程中誕生了,包括代數幾何中的橢圓曲線和模形式,以及伽羅瓦理論和赫克代數等。這也令人懷疑當初費馬是否真的找到了正確證明。而安德魯·懷爾斯由於成功證明此定理,獲得了包括邵逸夫獎在内的数十个奖项。 (zh)
  • Вели́ка теоре́ма Ферма́ (відома теорема Ферма, остання теорема Ферма) — твердження, що для довільного натурального числа рівняння (рівняння Ферма) не має розв´язків у цілих числах , відмінних від нуля. Вона була сформульована приблизно в 1637 році французьким математиком П'єром Ферма на полях книги Діофанта таким чином: Зустрічаються більш вузькі варіанти формулювання, один з який стверджує, що це рівняння не має натуральних коренів. Однак очевидно, що якщо існують корені в цілих числах, то існують і в натуральних числах. Справді, нехай a, b, c — цілі числа, що задовольняють рівняння Ферма. Якщо n парне, то |a |, | b |, | c | теж будуть коренями, а якщо непарне, то перенесемо всі степені з від'ємними значеннями в іншу частину рівняння, змінивши знак. Наприклад, якби існував розв'язок рівняння і при цьому від'ємне, а інші додатні, то , і отримуємо натуральні рішення c, | a |, b. Тому обидва формулювання еквівалентні. Узагальненнями затвердження теореми Ферма є спростована гіпотеза Ейлера і відкрита . (uk)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 19021953 (xsd:integer)
dbo:wikiPageLength
  • 101975 (xsd:integer)
dbo:wikiPageRevisionID
  • 984686960 (xsd:integer)
dbo:wikiPageWikiLink
dbp:caption
  • The 1670 edition of Diophantus's Arithmetica includes Fermat's commentary, referred to as his "Last Theorem" , posthumously published by his son. (en)
dbp:date
  • October 2017 (en)
dbp:field
dbp:firstProofBy
dbp:firstProofDate
  • Released 1994Published 1995 (en)
dbp:firstStatedBy
dbp:id
  • p/f110070 (en)
dbp:name
  • Fermat's Last Theorem (en)
dbp:reason
  • what is unabbreviated journal name? (en)
  • it is unlikely that this article was published in the Bohemian language (en)
dbp:statement
  • For any integer , the equation has no positive integer solutions. (en)
dbp:title
  • Fermat's Last Theorem (en)
  • Fermat's last theorem (en)
dbp:urlname
  • FermatsLastTheorem (en)
dbp:wikiPageUsesTemplate
dct:subject
rdf:type
rdfs:comment
  • En teoría de números, el último teorema de Fermat, o teorema de Fermat-Wiles, es uno de los teoremas más famosos en la historia de la matemática. Utilizando la notación moderna, se puede enunciar de la siguiente manera: Este teorema fue conjeturado por Pierre de Fermat en 1637, pero no fue demostrado hasta 1995 por Andrew Wiles ayudado por el matemático Richard Taylor. La búsqueda de una demostración estimuló el desarrollo de la teoría algebraica de números en el siglo XIX y la demostración del teorema de la modularidad en el siglo XX. (es)
  • Timpeall 1637 scríobh an matamaiticeoir Pierre de Fermat go raibh sé tar éis a chruthú nárbh fhéidir aon slánuimhir n níos mó ná 2 a aimsiú a chomhlíonfadh an chothromóid xn + yn = zn, sa chás gur slánuimhreacha iad x, y is z. (Más n = 2, is ionann an chothromóid seo is teoirim Phíotágaráis). Cailleadh a chruthú. Bhí an teoirim ina sprioc dhoshroichte sa mhatamaitic leis na céadta bliain. Faoi dheireadh, i lár na 1990idí léirigh matamaiticeoir Sasanach, Andrew Wiles, cruthú fada casta a shásaigh na matamaiticeoirí. (ga)
  • Teorema Terakhir Fermat (Inggris: Fermat's Last Theorem) adalah salah satu teorema paling terkenal dalam matematika, dicetuskan oleh Pierre de Fermat pada abad ke-17. Teorema ini mengatakan: Pada tahun 1637, Fermat menulis teorema tersebut pada pinggiran salah satu halaman bukunya. Ia mengklaim telah menemukan bukti dari teori tersebut, hanya saja ia tidak bisa menuliskannya karena pinggiran halaman bukunya tidak muat lagi. Akan tetapi, selama 357 tahun berikutnya, para matematikawan dunia tidak dapat membuktikannya, dan teorema ini menjadi salah satu teka-teki terbesar dalam matematika. Akhirnya, pada tahun 1994, matematikawan Inggris bernama Andrew Wiles berhasil membuktikan kebenaran teorema ini. (in)
  • L'ultimo teorema di Fermat (più correttamente definibile come ultima congettura di Fermat, non essendo dimostrata all'epoca) affermò che non esistono soluzioni intere positive all'equazione: se . (it)
  • フェルマーの最終定理(フェルマーのさいしゅうていり、Fermat's Last Theorem)とは、3 以上の自然数 n について、xn + yn = zn となる自然数の組 (x, y, z) は存在しない、という定理のことである。フェルマーの大定理とも呼ばれる。ピエール・ド・フェルマーが驚くべき証明を得たと書き残したと伝えられ、長らく証明も反証もなされなかったことからフェルマー予想とも称されたが、フェルマーの死後360年経った1995年にアンドリュー・ワイルズによって完全に証明され、ワイルズの定理あるいはフェルマー・ワイルズの定理とも呼ばれるようになった。 (ja)
  • 페르마의 마지막 정리(영어: Fermat’s last theorem)는 정수론에서 3 이상 지수의 거듭제곱수는 같은 지수의 두 거듭제곱수의 합으로 나타낼 수 없다는 정리이다. 즉, 가 양의 정수이고, 이 3 이상의 정수일 때, 항상 이다. 이 정리는 1637년 프랑스의 유명한 수학자였던 피에르 드 페르마가 처음으로 추측하였다. 수많은 수학자들이 이를 증명하기 위해서 노력하였으나 실패하였다. 페르마가 자신의 추측을 기록한지 358년이 지난 1995년에 이르러서야 영국의 저명한 수학자인 앤드루 와일스에게 증명되었다. 이 방법이 페르마가 살던 시기에는 발견되지 않은 데다가 매우 복잡하기 때문에 수학자들은 페르마가 다른 방법으로 증명했거나 증명에 실패했다고 추측한다. 이 정리를 증명하기 위한 수학자들의 각고의 노력 덕분에 19세기 대수적 수론이 발전했고 20세기에 모듈러성 정리가 증명되었다. 앤드루 와일스의 증명은 기네스북에서 가장 어려운 수학 문제로 등재되었다. 사실 이 문제는 고대 그리스의 저명한 수학자인 피타고라스가 증명한 피타고라스 정리가 세제곱, 네제곱 등에서도 성립할까라는 질문에서 시작되었다고 한다. (ko)
  • Вели́кая теоре́ма Ферма́ (или Последняя теорема Ферма) — одна из самых популярных теорем математики. Её условие формулируется просто, на «школьном» арифметическом уровне, однако доказательство теоремы искали многие математики более трёхсот лет. Доказана в 1994 году Эндрю Уайлсом с коллегами (доказательство опубликовано в 1995 году). (ru)
  • Fermats stora sats, även Fermats sista sats, Fermats gåta eller Fermats teorem, är en sats av talteori uppkallad efter Pierre de Fermat som formulerades 1637, men som inte bevisades förrän 1995. (sv)
  • 費馬大定理(亦名费马最后定理,法語:Le dernier théorème de Fermat,英語:Fermat's Last Theorem),其概要為: 当整數时,关于, , 的不定方程 没有正整数解。 以上陳述由17世纪法国数学家费马提出,一直被稱為「费马猜想」,直到英國數學家安德魯·懷爾斯(Andrew John Wiles)及其學生理查·泰勒(Richard Taylor)於1995年將他們的證明出版後,才稱為「費馬最后定理」。這個猜想最初出現費馬的《》中。儘管費馬表明他已找到一個精妙的證明而頁邊没有足夠的空位寫下,但仍然經過數學家們三個多世紀的努力,猜想才變成了定理。在衝擊這個数论世紀难题的過程中,無論是不完全的還是最後完整的證明,都給數學界帶來很大的影響;很多的數學結果、甚至數學分支在這個過程中誕生了,包括代數幾何中的橢圓曲線和模形式,以及伽羅瓦理論和赫克代數等。這也令人懷疑當初費馬是否真的找到了正確證明。而安德魯·懷爾斯由於成功證明此定理,獲得了包括邵逸夫獎在内的数十个奖项。 (zh)
  • في نظرية الأعداد، تنص مبرهنة فيرما الأخيرة (بالإنجليزية: Fermat's Last Theorem) على أنه لا توجد أعداد صحيحة طبيعية x و y و z حيث: حيث n أكبر قطعا من 2. حُدست هذه الحدسية لأول مرة من طرف بيير دي فيرما عام 1637، كما اشتهر، على هامش نسخة من كتاب للحسابيات، حيث زعم أن له برهانا أكبر من أن يسعه ذلك الهامش. لم ينشر لهذه الحدسية برهان صحيح حتى عام 1995 على يد أندرو وايلز، رغم جهود عدد غير منته من علماء الرياضيات خلال 358 سنة مرت على حدسها. هذه المعضلة المستعصية على الحل حثت على تطور نظرية الأعداد الجبرية خلال القرن التاسع عشر كما أدت إلى البرهان على مبرهنة النمطية خلال القرن العشرين. (ar)
  • El darrer teorema de Fermat, conegut actualment també com teorema de Wiles-Fermat, afirma que l'equació diofàntica no té cap solució entera per a n > 2 i essent x, y i z diferents de zero. És un dels teoremes més famosos de la història de les matemàtiques i fins a l'any 1995 no es disposava d'una demostració (i, per tant, en rigor s'havia d'anomenar conjectura de Fermat). Fixem-nos que quan n = 2 l'equació equival al teorema de Pitàgores i òbviament té infinites solucions. és a dir, (ca)
  • Velká Fermatova věta je jedna z nejslavnějších vět v historii matematiky. Zní takto: Neexistují celá kladná čísla x, y, z a n, kde n > 2, pro která . Větu si v 17. století francouzský matematik Pierre de Fermat poznamenal na okraj knihy v této podobě: Cubum autem in duos cubos, aut quadrato-quadratum in duos quadrato-quadratos, et generaliter nullam in infinitum ultra quadratum potestatem in duos eiusdem nominis fas est dividere cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exigitas non caperet. O Fermatově problému a jeho řešení byla do češtiny přeložena kniha. (cs)
  • Der Große Fermatsche Satz wurde im 17. Jahrhundert von Pierre de Fermat formuliert, aber erst 1994 von Andrew Wiles bewiesen. Als schlüssiger Höhepunkt für den Beweis gilt die Zusammenarbeit von Wiles mit Richard Taylor, die sich neben dem endgültigen Beweis durch Wiles in einer gleichzeitigen Veröffentlichung eines Teilbeweises von beiden, Wiles und Taylor, als gemeinsame Autoren niederschlug. Die Gleichung ist für positive ganze Zahlen unlösbar, wenn größer als zwei ist. (de)
  • Στη θεωρία αριθμών, το τελευταίο θεώρημα του Φερμά (ορισμένες φορές ονομάζεται Υπόθεση του Φερμά, κυρίως σε παλαιότερα κείμενα) διατυπώνεται ως εξής: τρεις θετικοί ακέραιοι αριθμοί a, b, και c δεν μπορούν να ικανοποιήσουν την εξίσωση an + bn = cn για κάθε ακέραιο αριθμό n μεγαλύτερο από το δύο. Επομένως, χωρίς τη χρήση μαθηματικών συμβόλων μπορεί να εκφραστεί: Είναι αδύνατον να χωρίσεις οποιαδήποτε δύναμη μεγαλύτερη της δεύτερης σε δύο ίδιες δυνάμειςΤο θεώρημα αυτό διατυπώθηκε πρώτη φορά το 1637 από τον Φερμά, με τη μορφή χειρόγραφης σημείωσης σε ένα βιβλίο (συγκεκριμένα στα Αριθμητικά του Διόφαντου), όπου ο ίδιος ισχυρίστηκε ότι έχει την απόδειξη του θεωρήματος αλλά είναι τόσο μεγάλη που δεν χωρούσε στη σημείωση. Καμία επιτυχής απόδειξη δεν δημοσιεύθηκε μέχρι το 1995, παρά τις προσπάθειες (el)
  • La lasta teoremo de Fermat estas unu el la plej famaj teoremoj pri nombroteorio en la historio de la matematiko. Ĝi asertas, ke se n estas natura nombro pli granda ol 2, tiam ne ekzistas pozitivaj plenaj nombroj x, y kaj z, kiuj validigas la egalaĵon xn + yn = zn. (eo)
  • Fermaten azken teorema zenbakien teoriaren teoremarik ospetsuenetako bat da. Era honetan adierazi zuen Pierre de Fermat XVII. mendeko frantziar matematikariak: ekuazioko berretzailea 3 edo zenbaki handiagoa denean, zenbaki oso eta positiboko soluziorik ez du (eu)
  • In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers a, b, and c satisfy the equation an + bn = cn for any integer value of n greater than 2. The cases n = 1 and n = 2 have been known since antiquity to have infinitely many solutions. (en)
  • En mathématiques, et plus précisément en théorie des nombres, le dernier théorème de Fermat, ou grand théorème de Fermat, ou depuis sa démonstration théorème de Fermat-Wiles, s'énonce comme suit : Théorème — Il n'existe pas de nombres entiers strictement positifs x, y et z tels que : dès que n est un entier strictement supérieur à 2. (fr)
  • Wielkie twierdzenie Fermata – twierdzenie, które brzmi: dla liczby naturalnej nie istnieją takie liczby naturalne dodatnie które spełniałyby równanie Pierre de Fermat zanotował je na marginesie łacińskiego tłumaczenia książki Arithmetica Diofantosa i opatrzył następującą uwagą: znalazłem zaiste zadziwiający dowód tego twierdzenia. Niestety, margines jest zbyt mały, by go pomieścić, lub w innej wersji: (pl)
  • De laatste stelling van Fermat, ook wel de grote stelling van Fermat genoemd en niet te verwarren met de zogenaamde kleine stelling van Fermat, is een beroemde wiskundige stelling opgesteld door Pierre de Fermat die zegt dat het onmogelijk is een macht hoger dan de tweede op te delen in twee machten met diezelfde graad. In wiskundige notatie: voor heeft de vergelijking geen oplossing met natuurlijke getallen en ongelijk aan 0. (nl)
  • O Último Teorema de Fermat é um famoso teorema matemático conjecturado pelo matemático francês Pierre de Fermat em 1637. Trata-se de uma generalização do famoso Teorema de Pitágoras, que diz "a soma dos quadrados dos catetos é igual ao quadrado da hipotenusa": () Ao propor seu teorema, Fermat substituiu o expoente 2 na fórmula de Pitágoras por um número natural maior do que 2 (), e afirmou que, nesse caso, a equação não tem solução, se n for um inteiro maior do que 2 e (x,y,z) naturais (inteiros > 0). (pt)
  • Вели́ка теоре́ма Ферма́ (відома теорема Ферма, остання теорема Ферма) — твердження, що для довільного натурального числа рівняння (рівняння Ферма) не має розв´язків у цілих числах , відмінних від нуля. Вона була сформульована приблизно в 1637 році французьким математиком П'єром Ферма на полях книги Діофанта таким чином: Узагальненнями затвердження теореми Ферма є спростована гіпотеза Ейлера і відкрита . (uk)
rdfs:label
  • Fermat's Last Theorem (en)
  • مبرهنة فيرما الأخيرة (ar)
  • Darrer teorema de Fermat (ca)
  • Velká Fermatova věta (cs)
  • Großer Fermatscher Satz (de)
  • Τελευταίο θεώρημα του Φερμά (el)
  • Lasta teoremo de Fermat (eo)
  • Último teorema de Fermat (es)
  • Fermaten azken teorema (eu)
  • Dernier théorème de Fermat (fr)
  • Teoirim dheireanach Fermat (ga)
  • Teorema Terakhir Fermat (in)
  • Ultimo teorema di Fermat (it)
  • フェルマーの最終定理 (ja)
  • 페르마의 마지막 정리 (ko)
  • Laatste stelling van Fermat (nl)
  • Wielkie twierdzenie Fermata (pl)
  • Último teorema de Fermat (pt)
  • Великая теорема Ферма (ru)
  • Fermats stora sats (sv)
  • Велика теорема Ферма (uk)
  • 费马大定理 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:consequences of
is dbp:knownFor of
is dbp:subject of
is owl:differentFrom of
is foaf:primaryTopic of