dbo:abstract
|
- In algebra, an elliptic algebra is a certain regular algebra of a Gelfand–Kirillov dimension three (quantum polynomial ring in three variables) that corresponds to a cubic divisor in the projective space P2. If the cubic divisor happens to be an elliptic curve, then the algebra is called a Sklyanin algebra. The notion is studied in the context of noncommutative projective geometry. (en)
- Inom matematiken är en elliptisk algebra en viss av Gelfand–Kirillovdimension tre ( i tre variabler) som korresponderar till en kubisk delare i projektiva rummet P2. Om kubiska delaren är en elliptisk kurva säges algebran vara en Sklyaninalgebra. Denna beteckning studeras i . (sv)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 736 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dct:subject
| |
gold:hypernym
| |
rdfs:comment
|
- In algebra, an elliptic algebra is a certain regular algebra of a Gelfand–Kirillov dimension three (quantum polynomial ring in three variables) that corresponds to a cubic divisor in the projective space P2. If the cubic divisor happens to be an elliptic curve, then the algebra is called a Sklyanin algebra. The notion is studied in the context of noncommutative projective geometry. (en)
- Inom matematiken är en elliptisk algebra en viss av Gelfand–Kirillovdimension tre ( i tre variabler) som korresponderar till en kubisk delare i projektiva rummet P2. Om kubiska delaren är en elliptisk kurva säges algebran vara en Sklyaninalgebra. Denna beteckning studeras i . (sv)
|
rdfs:label
|
- Elliptic algebra (en)
- Elliptisk algebra (sv)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |