About: Dunn index

An Entity of Type: software, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

The Dunn index (DI) (introduced by J. C. Dunn in 1974) is a metric for evaluating clustering algorithms. This is part of a group of validity indices including the Davies–Bouldin index or Silhouette index, in that it is an internal evaluation scheme, where the result is based on the clustered data itself. As do all other such indices, the aim is to identify sets of clusters that are compact, with a small variance between members of the cluster, and well separated, where the means of different clusters are sufficiently far apart, as compared to the within cluster variance. For a given assignment of clusters, a higher Dunn index indicates better clustering. One of the drawbacks of using this is the computational cost as the number of clusters and dimensionality of the data increase.

Property Value
dbo:abstract
  • The Dunn index (DI) (introduced by J. C. Dunn in 1974) is a metric for evaluating clustering algorithms. This is part of a group of validity indices including the Davies–Bouldin index or Silhouette index, in that it is an internal evaluation scheme, where the result is based on the clustered data itself. As do all other such indices, the aim is to identify sets of clusters that are compact, with a small variance between members of the cluster, and well separated, where the means of different clusters are sufficiently far apart, as compared to the within cluster variance. For a given assignment of clusters, a higher Dunn index indicates better clustering. One of the drawbacks of using this is the computational cost as the number of clusters and dimensionality of the data increase. (en)
  • L'indice de Dunn est une mesure de qualité d'une partition d'un ensemble de données en classification automatique. C'est le rapport entre la distance maximum qui sépare deux éléments classés ensemble et la distance minimum qui sépare deux éléments classés séparément. C'est un indice qui ne repose pas sur une distance particulière et qui peut donc être utilisée dans une grande variété de situations. Une alternative à l'indice de Dunn est l'indice de Davies-Bouldin. (fr)
dbo:wikiPageID
  • 33970782 (xsd:integer)
dbo:wikiPageLength
  • 5567 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1124562963 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • The Dunn index (DI) (introduced by J. C. Dunn in 1974) is a metric for evaluating clustering algorithms. This is part of a group of validity indices including the Davies–Bouldin index or Silhouette index, in that it is an internal evaluation scheme, where the result is based on the clustered data itself. As do all other such indices, the aim is to identify sets of clusters that are compact, with a small variance between members of the cluster, and well separated, where the means of different clusters are sufficiently far apart, as compared to the within cluster variance. For a given assignment of clusters, a higher Dunn index indicates better clustering. One of the drawbacks of using this is the computational cost as the number of clusters and dimensionality of the data increase. (en)
  • L'indice de Dunn est une mesure de qualité d'une partition d'un ensemble de données en classification automatique. C'est le rapport entre la distance maximum qui sépare deux éléments classés ensemble et la distance minimum qui sépare deux éléments classés séparément. C'est un indice qui ne repose pas sur une distance particulière et qui peut donc être utilisée dans une grande variété de situations. Une alternative à l'indice de Dunn est l'indice de Davies-Bouldin. (fr)
rdfs:label
  • Dunn index (en)
  • Indice de Dunn (fr)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License