Catastrophic interference, also known as catastrophic forgetting, is the tendency of an artificial neural network to completely and abruptly forget previously learned information upon learning new information. Neural networks are an important part of the network approach and connectionist approach to cognitive science. These networks use computer simulations to try to model human behaviours, such as memory and learning. Catastrophic interference is an important issue to consider when creating connectionist models of memory. It was originally brought to the attention of the scientific community by research from McCloskey and Cohen (1989), and Ratcliff (1990). It is a radical manifestation of the 'sensitivity-stability' dilemma or the 'stability-plasticity' dilemma. Specifically, these probl

Property Value
dbo:abstract
  • Catastrophic interference, also known as catastrophic forgetting, is the tendency of an artificial neural network to completely and abruptly forget previously learned information upon learning new information. Neural networks are an important part of the network approach and connectionist approach to cognitive science. These networks use computer simulations to try to model human behaviours, such as memory and learning. Catastrophic interference is an important issue to consider when creating connectionist models of memory. It was originally brought to the attention of the scientific community by research from McCloskey and Cohen (1989), and Ratcliff (1990). It is a radical manifestation of the 'sensitivity-stability' dilemma or the 'stability-plasticity' dilemma. Specifically, these problems refer to the issue of being able to make an artificial neural network that is sensitive to, but not disrupted by, new information. Lookup tables and connectionist networks lie on the opposite sides of the stability plasticity spectrum. The former remains completely stable in the presence of new information but lacks the ability to generalize, i.e. infer general principles, from new inputs. On the other hand, connectionist networks like the standard backpropagation network are very sensitive to new information and can generalize on new inputs. Backpropagation models can be considered good models of human memory insofar as they mirror the human ability to generalize but these networks often exhibit less stability than human memory. Notably, these backpropagation networks are susceptible to catastrophic interference. This is considered an issue when attempting to model human memory because, unlike these networks, humans typically do not show catastrophic forgetting. Thus, the issue of catastrophic interference must be eradicated from these backpropagation models in order to enhance the plausibility as models of human memory. (en)
dbo:thumbnail
dbo:wikiPageID
  • 39182554 (xsd:integer)
dbo:wikiPageLength
  • 28148 (xsd:integer)
dbo:wikiPageRevisionID
  • 984853332 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dct:subject
rdf:type
rdfs:comment
  • Catastrophic interference, also known as catastrophic forgetting, is the tendency of an artificial neural network to completely and abruptly forget previously learned information upon learning new information. Neural networks are an important part of the network approach and connectionist approach to cognitive science. These networks use computer simulations to try to model human behaviours, such as memory and learning. Catastrophic interference is an important issue to consider when creating connectionist models of memory. It was originally brought to the attention of the scientific community by research from McCloskey and Cohen (1989), and Ratcliff (1990). It is a radical manifestation of the 'sensitivity-stability' dilemma or the 'stability-plasticity' dilemma. Specifically, these probl (en)
rdfs:label
  • Catastrophic interference (en)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of