An Entity of Type: Abstraction100002137, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In algebra, an augmentation ideal is an ideal that can be defined in any group ring. If G is a group and R a commutative ring, there is a ring homomorphism , called the augmentation map, from the group ring to , defined by taking a (finite) sum to (Here and .) In less formal terms, for any element , for any element , and is then extended to a homomorphism of R-modules in the obvious way. The augmentation ideal A is the kernel of and is therefore a two-sided ideal in R[G]. The augmentation ideal plays a basic role in group cohomology, amongst other applications.

Property Value
dbo:abstract
  • In algebra, an augmentation ideal is an ideal that can be defined in any group ring. If G is a group and R a commutative ring, there is a ring homomorphism , called the augmentation map, from the group ring to , defined by taking a (finite) sum to (Here and .) In less formal terms, for any element , for any element , and is then extended to a homomorphism of R-modules in the obvious way. The augmentation ideal A is the kernel of and is therefore a two-sided ideal in R[G]. A is generated by the differences of group elements. Equivalently, it is also generated by , which is a basis as a free R-module. For R and G as above, the group ring R[G] is an example of an augmented R-algebra. Such an algebra comes equipped with a ring homomorphism to R. The kernel of this homomorphism is the augmentation ideal of the algebra. The augmentation ideal plays a basic role in group cohomology, amongst other applications. (en)
  • 代數中,增廣理想是可以在任何群環中定義的一種理想。若G是群,R是交換環,則有一個自群環R[G]至R的環同態,稱為增廣映射,將R[G]的元素 映射至 其中ri是R的元素,gi是G的元素。按照群環的定義,以上的和是有限和。較籠統而言,對G任何元素g,定義 為1R,再將以最顯然的方法延伸成R-模的同態。增廣理想是的核,因此是R[G]的雙邊理想,由群元素的差 生成。 此外,增廣理想是自由R-模,可用 為其基底而生成。 對上述的R和G,群環R[G]是增廣R-代數的一例。這樣的代數都帶有一個映至R上的環同態。這個環同態的核是這個代數的增廣理想。 增廣理想的另一類例子是任何霍普夫代數的的核。 增廣理想是群上同調等應用中的基本工具。 (zh)
dbo:wikiPageID
  • 2224774 (xsd:integer)
dbo:wikiPageLength
  • 2801 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1089032430 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • 代數中,增廣理想是可以在任何群環中定義的一種理想。若G是群,R是交換環,則有一個自群環R[G]至R的環同態,稱為增廣映射,將R[G]的元素 映射至 其中ri是R的元素,gi是G的元素。按照群環的定義,以上的和是有限和。較籠統而言,對G任何元素g,定義 為1R,再將以最顯然的方法延伸成R-模的同態。增廣理想是的核,因此是R[G]的雙邊理想,由群元素的差 生成。 此外,增廣理想是自由R-模,可用 為其基底而生成。 對上述的R和G,群環R[G]是增廣R-代數的一例。這樣的代數都帶有一個映至R上的環同態。這個環同態的核是這個代數的增廣理想。 增廣理想的另一類例子是任何霍普夫代數的的核。 增廣理想是群上同調等應用中的基本工具。 (zh)
  • In algebra, an augmentation ideal is an ideal that can be defined in any group ring. If G is a group and R a commutative ring, there is a ring homomorphism , called the augmentation map, from the group ring to , defined by taking a (finite) sum to (Here and .) In less formal terms, for any element , for any element , and is then extended to a homomorphism of R-modules in the obvious way. The augmentation ideal A is the kernel of and is therefore a two-sided ideal in R[G]. The augmentation ideal plays a basic role in group cohomology, amongst other applications. (en)
rdfs:label
  • Augmentation ideal (en)
  • 增廣理想 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License