An Entity of Type: organisation, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify up to homotopy equivalence. Although algebraic topology primarily uses algebra to study topological problems, using topology to solve algebraic problems is sometimes also possible. Algebraic topology, for example, allows for a convenient proof that any subgroup of a free group is again a free group.

Property Value
dbo:abstract
  • Algebraická topologie je matematická věda, která využívá prostředky abstraktní algebry k studiu topologických prostorů. Součástí je popis homotopických invariantů topologických prostorů a jejich klasifikace. (cs)
  • La topologia algebraica és el camp de les matemàtiques que usa estructures algebraiques per estudiar transformacions d'. Usa funcions (sovint anomenades aplicacions en aquest context) per representar . Considerades en conjunt, les aplicacions i els objectes poden tenir una estructura de grup algebraic, que es pot estudiar amb mètodes de la teoria de grups. Utilitza les eines de l'àlgebra abstracta per estudiar els espais topològics. L'objectiu principal és trobar invariants algebraics que permetin classificar els espais topològics llevat d'homeomorfismes, encara que, en la majoria de casos, aquesta classificació es dona només fins al nivell d'equivalència d'homotopia. Encara que la topologia algebraica utilitza principalment l'àlgebra per estudiar problemes topològics, de vegades també és possible utilitzar la topologia per resoldre problemes algebraics. Per exemple, proporciona una demostració convenient de què qualsevol subgrup d'un grup lliure és també un grup lliure. (ca)
  • Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify up to homotopy equivalence. Although algebraic topology primarily uses algebra to study topological problems, using topology to solve algebraic problems is sometimes also possible. Algebraic topology, for example, allows for a convenient proof that any subgroup of a free group is again a free group. (en)
  • Η αλγεβρική τοπολογία είναι ένας κλάδος των μαθηματικών ο οποίος χρησιμοποιεί εργαλεία από την αφηρημένη άλγεβρα για τη μελέτη τοπολογικών χώρων. Βασικός στόχος της είναι η εύρεση αναλλοίωτων αλγεβρικών στοιχείων τα οποία ταξινομούν τους τοπολογικούς χώρους μέχρι και τον ομοιομορφισμό, αν και τα περισσότερα στοιχεία συνήθως ταξινομούν μέχρι και την ισοδυναμία ομοτοπίας. Παρόλο που η αλγεβρική τοπολογία χρησιμοποιεί κυρίως την άλγεβρα για την μελέτη των τοπολογικών προβλημάτων, είναι μερικές φορές δυνατή και η χρησιμοποίηση της τοπολογίας. Παραδείγματος χάρη, η αλγεβρική τοπολογία επιτρέπει την εύκολη απόδειξη ότι οποιαδήποτε υποομάδα μιας ελεύθερης ομάδας αποτελεί με την σειρά της μια ελεύθερη ομάδα. (el)
  • Algebra topologio estas branĉo de matematiko en kiu oni per abstrakta algebro studas topologiajn spacojn. (eo)
  • Die algebraische Topologie ist ein Teilgebiet der Mathematik, das topologische Räume (oder auch Lagebeziehungen im Raum wie zum Beispiel in der Knotentheorie) mit Hilfe von algebraischen Strukturen untersucht. Sie ist eine Teildisziplin der Topologie. Die Grundidee besteht darin, gewissen topologischen Räumen, zum Beispiel Teilmengen des Anschauungsraums wie Kugeln, Tori oder deren Oberflächen, gewisse algebraische Strukturen wie zum Beispiel Gruppen oder Vektorräume zuzuordnen, und das auf eine Weise, dass verwickelte Verhältnisse auf Seiten der topologischen Räume sich vereinfacht auf Seiten der algebraischen Strukturen wiederfinden und so einer Behandlung zugänglich werden. (de)
  • La Topología algebraica es una rama de las matemáticas en la que se usan las herramientas del álgebra abstracta para estudiar los espacios topológicos. El objetivo básico es encontrar invariantes algebraicas que clasifican los espacios topológicos salvo homeomorfismo, aunque normalmente muchos se clasifican salvo equivalencia homotópica. (es)
  • La topologie algébrique, anciennement appelée topologie combinatoire, est la branche des mathématiques appliquant les outils de l'algèbre dans l'étude des espaces topologiques. Plus exactement, elle cherche à associer de manière naturelle des invariants algébriques aux structures topologiques associées. La naturalité signifie que ces invariants vérifient des propriétés de fonctorialité au sens de la théorie des catégories. (fr)
  • Dalam matematika, khususnya aljabar dan topologi, topologi aljabar merupakan subbidang yang mempelajari topologi dengan memanfaatkan struktur-struktur dalam aljabar abstrak. Salah satu ide dasar dalam topologi aljabar adalah untuk mencari suatu invarian antara dua buah ruang topologi yang membantu melakukan klasifikasi ruang topologi atas homeomorfisme atau ekuivalensi homotopis. (in)
  • La topologia algebrica è una branca della matematica che applica gli strumenti dell'algebra astratta per studiare gli spazi topologici. (it)
  • 대수적 위상수학(代數的位相數學, 영어: algebraic topology)은 추상대수학적 도구를 사용하여 위상 공간과 다양체들을 다루는 위상수학의 분야다. (ko)
  • 代数的位相幾何学(だいすうてきいそうきかがく、英語:algebraic topology、代数的トポロジー)は代数的手法を用いる位相幾何学の分野のことをいう。古典的な位相幾何学は、図形として取り扱い易い多面体を扱っていたが、1900年前後のポアンカレの一連の研究を契機として20世紀に発展した。ポアンカレは 1895年に出版した "Analysis Situs" の中で、ホモトピーおよびホモロジーの概念を導入した。これらはいまや代数的位相幾何学の大きな柱であると考えられている。多様体、基本群、ホモトピー、ホモロジー、コホモロジー、ファイバー束などの、位相空間の不変量として代数系を対応させ、位相的性質を代数的性質に移して研究する. * セル複体(胞体複体) * 単体的複体 * CW複体 * 多様体 * 閉曲面 (ja)
  • Topologia algebraiczna – dział matematyki, który zajmuje się badaniem przestrzeni topologicznych przy użyciu metod algebraicznych. Zazwyczaj polega ono na tym, że przestrzeniom topologicznym przyporządkowuje się pewne obiekty algebraiczne (przykładem takiego obiektu może być grupa podstawowa przestrzeni topologicznej). Przyporządkowanie takie powinno spełniać określone warunki, na przykład taki, że obiekty przyporządkowane przestrzeniom homeomorficznym (czyli izomorficznym w sensie topologicznym) są izomorficzne w sensie algebraicznym. W wielu teoriach dowodzi się ogóloniejszego twierdzenia o tym, że przyporządkowane obiekty algebraiczne są izomorficzne już dla przestrzeni topologicznych równoważnych homotopijnie. Homeomorfizm jest izomorfizmem w kategorii przestrzeni topologicznych, homotopijna równoważność w kategorii homotopijnej. Następnie bada się uzyskane struktury algebraiczne i na tej podstawie wyciąga wnioski dotyczące własności wyjściowych przestrzeni topologicznych. Wykorzystuje się w tym celu między innymi przekształcenia pomiędzy kategorią przestrzeni topologicznych i kategorią struktur algebraicznych określonego rodzaju, które określa się mianem funktorów. Te ostatnie stanowią jedno z podstawowych pojęć teorii kategorii, która – podobnie jak algebra homologiczna – właśnie w topologii algebraicznej znajduje najliczniejsze zastosowania. (pl)
  • In de wiskunde vormt de algebraïsche topologie een onderdeel van de topologie waarin technieken uit de algebra gebruikt worden om topologische onderwerpen te bestuderen. Omgekeerd worden topologische technieken gebruikt om resultaten uit de algebra te bewijzen. (nl)
  • Ramo da Matemática que faz a ligação entre a Topologia e a Álgebra. Baseia-se na associação de estruturas algébricas a um espaço topológico com o objectivo de obter informações sobre esse espaço. Os exemplos básicos são os grupos de homologia e os grupos de homotopia, entre os quais se encontra o grupo fundamental. Embora a topologia algébrica utilize a álgebra para estudar os problemas de topologia, a recíproca, usar a topologia para resolver problemas de álgebra, é por vezes também possível. A topologia algébrica, por exemplo, permite uma demonstração conveniente de que qualquer subgrupo de um grupo livre é também um grupo livre. (pt)
  • Algebraisk topologi är ett område inom matematiken som studerar topologiska rum med hjälp av algebra. Det grundläggande målet är att hitta algebraiska invarianter som klassificerar topologiska rum homeomorfier; men ofta skiljer sig invarianterna inte om rummen är homotopa. (sv)
  • Алгебрична топологія (застаріла назва: «комбінаторна топологія») — розділ топології, який вивчає топологічні простори шляхом зіставлення їм алгебричних об'єктів, а також поведінку цих об'єктів під дією різних топологічних операцій. (uk)
  • 代数拓扑(英語:Algebraic topology)是使用抽象代数的工具来研究拓扑空间的数学分支。 (zh)
  • Алгебраи́ческая тополо́гия (устаревшее название: комбинаторная топология) — раздел топологии, изучающий топологические пространства путём сопоставления им алгебраических объектов (групп, колец и т. д.), а также поведение этих объектов под действием различных топологических операций. (ru)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 38801 (xsd:integer)
dbo:wikiPageLength
  • 18916 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1054219044 (xsd:integer)
dbo:wikiPageWikiLink
dbp:id
  • p/a011700 (en)
dbp:title
  • Algebraic topology (en)
dbp:wikiPageUsesTemplate
dct:subject
gold:hypernym
rdf:type
rdfs:comment
  • Algebraická topologie je matematická věda, která využívá prostředky abstraktní algebry k studiu topologických prostorů. Součástí je popis homotopických invariantů topologických prostorů a jejich klasifikace. (cs)
  • Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify up to homotopy equivalence. Although algebraic topology primarily uses algebra to study topological problems, using topology to solve algebraic problems is sometimes also possible. Algebraic topology, for example, allows for a convenient proof that any subgroup of a free group is again a free group. (en)
  • Algebra topologio estas branĉo de matematiko en kiu oni per abstrakta algebro studas topologiajn spacojn. (eo)
  • La Topología algebraica es una rama de las matemáticas en la que se usan las herramientas del álgebra abstracta para estudiar los espacios topológicos. El objetivo básico es encontrar invariantes algebraicas que clasifican los espacios topológicos salvo homeomorfismo, aunque normalmente muchos se clasifican salvo equivalencia homotópica. (es)
  • La topologie algébrique, anciennement appelée topologie combinatoire, est la branche des mathématiques appliquant les outils de l'algèbre dans l'étude des espaces topologiques. Plus exactement, elle cherche à associer de manière naturelle des invariants algébriques aux structures topologiques associées. La naturalité signifie que ces invariants vérifient des propriétés de fonctorialité au sens de la théorie des catégories. (fr)
  • Dalam matematika, khususnya aljabar dan topologi, topologi aljabar merupakan subbidang yang mempelajari topologi dengan memanfaatkan struktur-struktur dalam aljabar abstrak. Salah satu ide dasar dalam topologi aljabar adalah untuk mencari suatu invarian antara dua buah ruang topologi yang membantu melakukan klasifikasi ruang topologi atas homeomorfisme atau ekuivalensi homotopis. (in)
  • La topologia algebrica è una branca della matematica che applica gli strumenti dell'algebra astratta per studiare gli spazi topologici. (it)
  • 대수적 위상수학(代數的位相數學, 영어: algebraic topology)은 추상대수학적 도구를 사용하여 위상 공간과 다양체들을 다루는 위상수학의 분야다. (ko)
  • 代数的位相幾何学(だいすうてきいそうきかがく、英語:algebraic topology、代数的トポロジー)は代数的手法を用いる位相幾何学の分野のことをいう。古典的な位相幾何学は、図形として取り扱い易い多面体を扱っていたが、1900年前後のポアンカレの一連の研究を契機として20世紀に発展した。ポアンカレは 1895年に出版した "Analysis Situs" の中で、ホモトピーおよびホモロジーの概念を導入した。これらはいまや代数的位相幾何学の大きな柱であると考えられている。多様体、基本群、ホモトピー、ホモロジー、コホモロジー、ファイバー束などの、位相空間の不変量として代数系を対応させ、位相的性質を代数的性質に移して研究する. * セル複体(胞体複体) * 単体的複体 * CW複体 * 多様体 * 閉曲面 (ja)
  • In de wiskunde vormt de algebraïsche topologie een onderdeel van de topologie waarin technieken uit de algebra gebruikt worden om topologische onderwerpen te bestuderen. Omgekeerd worden topologische technieken gebruikt om resultaten uit de algebra te bewijzen. (nl)
  • Algebraisk topologi är ett område inom matematiken som studerar topologiska rum med hjälp av algebra. Det grundläggande målet är att hitta algebraiska invarianter som klassificerar topologiska rum homeomorfier; men ofta skiljer sig invarianterna inte om rummen är homotopa. (sv)
  • Алгебрична топологія (застаріла назва: «комбінаторна топологія») — розділ топології, який вивчає топологічні простори шляхом зіставлення їм алгебричних об'єктів, а також поведінку цих об'єктів під дією різних топологічних операцій. (uk)
  • 代数拓扑(英語:Algebraic topology)是使用抽象代数的工具来研究拓扑空间的数学分支。 (zh)
  • Алгебраи́ческая тополо́гия (устаревшее название: комбинаторная топология) — раздел топологии, изучающий топологические пространства путём сопоставления им алгебраических объектов (групп, колец и т. д.), а также поведение этих объектов под действием различных топологических операций. (ru)
  • La topologia algebraica és el camp de les matemàtiques que usa estructures algebraiques per estudiar transformacions d'. Usa funcions (sovint anomenades aplicacions en aquest context) per representar . Considerades en conjunt, les aplicacions i els objectes poden tenir una estructura de grup algebraic, que es pot estudiar amb mètodes de la teoria de grups. Utilitza les eines de l'àlgebra abstracta per estudiar els espais topològics. L'objectiu principal és trobar invariants algebraics que permetin classificar els espais topològics llevat d'homeomorfismes, encara que, en la majoria de casos, aquesta classificació es dona només fins al nivell d'equivalència d'homotopia. (ca)
  • Η αλγεβρική τοπολογία είναι ένας κλάδος των μαθηματικών ο οποίος χρησιμοποιεί εργαλεία από την αφηρημένη άλγεβρα για τη μελέτη τοπολογικών χώρων. Βασικός στόχος της είναι η εύρεση αναλλοίωτων αλγεβρικών στοιχείων τα οποία ταξινομούν τους τοπολογικούς χώρους μέχρι και τον ομοιομορφισμό, αν και τα περισσότερα στοιχεία συνήθως ταξινομούν μέχρι και την ισοδυναμία ομοτοπίας. (el)
  • Die algebraische Topologie ist ein Teilgebiet der Mathematik, das topologische Räume (oder auch Lagebeziehungen im Raum wie zum Beispiel in der Knotentheorie) mit Hilfe von algebraischen Strukturen untersucht. Sie ist eine Teildisziplin der Topologie. (de)
  • Topologia algebraiczna – dział matematyki, który zajmuje się badaniem przestrzeni topologicznych przy użyciu metod algebraicznych. Zazwyczaj polega ono na tym, że przestrzeniom topologicznym przyporządkowuje się pewne obiekty algebraiczne (przykładem takiego obiektu może być grupa podstawowa przestrzeni topologicznej). Przyporządkowanie takie powinno spełniać określone warunki, na przykład taki, że obiekty przyporządkowane przestrzeniom homeomorficznym (czyli izomorficznym w sensie topologicznym) są izomorficzne w sensie algebraicznym. W wielu teoriach dowodzi się ogóloniejszego twierdzenia o tym, że przyporządkowane obiekty algebraiczne są izomorficzne już dla przestrzeni topologicznych równoważnych homotopijnie. Homeomorfizm jest izomorfizmem w kategorii przestrzeni topologicznych, homot (pl)
  • Ramo da Matemática que faz a ligação entre a Topologia e a Álgebra. Baseia-se na associação de estruturas algébricas a um espaço topológico com o objectivo de obter informações sobre esse espaço. Os exemplos básicos são os grupos de homologia e os grupos de homotopia, entre os quais se encontra o grupo fundamental. (pt)
rdfs:label
  • Algebraic topology (en)
  • طوبولوجيا جبرية (ar)
  • Topologia algebraica (ca)
  • Algebraická topologie (cs)
  • Algebraische Topologie (de)
  • Αλγεβρική τοπολογία (el)
  • Algebra topologio (eo)
  • Topología algebraica (es)
  • Topologi aljabar (in)
  • Topologie algébrique (fr)
  • 代数的位相幾何学 (ja)
  • Topologia algebrica (it)
  • 대수적 위상수학 (ko)
  • Algebraïsche topologie (nl)
  • Topologia algebraiczna (pl)
  • Topologia algébrica (pt)
  • Алгебраическая топология (ru)
  • Algebraisk topologi (sv)
  • Алгебрична топологія (uk)
  • 代数拓扑 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:academicDiscipline of
is dbo:knownFor of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:discipline of
is dbp:field of
is dbp:fields of
is dbp:knownFor of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License