About: Znm's problem     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Matter100020827, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FZnám%27s_problem

In number theory, Znám's problem asks which sets of k integers have the property that each integer in the set is a proper divisor of the product of the other integers in the set, plus 1. Znám's problem is named after the Slovak mathematician Štefan Znám, who suggested it in 1972, although other mathematicians had considered similar problems around the same time. One closely related problem drops the assumption of properness of the divisor, and will be called the improper Znám problem hereafter.

AttributesValues
rdf:type
rdfs:label
  • Problema de Znám
  • Problema de Znám
  • Znám's problem
  • Problema di Znám
  • 즈남 문제
  • Задача Знама
rdfs:comment
  • 즈남 문제(Znám problem)는 (Štefan Znám)이 제안하는 에르되시-스트라우스 추측, 이집트 분수, 실베스터 수열 등과 연관되는 추측이다. 이것은 "임의의 정수를 유한한 단위분수들의 집합으로 표현하는것이 가능한가?"라는 질문이다. 수론에서 즈남(Znam)의 문제는, 임의의 정수 "1"을 예로 들면, 일단의 단위분수의 세트가 임의의 정수의 적절한 분산임을 설정하고, 그 단위분수들의 합과 곱의 합에서 "1"이 가능한지를 구현한다. 한편 이러한 단위분수들이 계속해서 증가되는 세트에서도 여전히 "1"의 값을 갖게되는 일단의 세트 집합이 가능한지를 예상하게 된다.
  • En teoria de nombres, el problema de Znám és pregunta quins conjunts de k enters tenen la propietat que cada enter del conjunt és un divisor –sense comptar el mateix enter– del producte dels altres enters del conjunt, més 1. S'anomena en honor al matemàtic eslovac , el qual el suggerí l'any 1972; tanmateix, altres matemàtics ja havien considerat problemes similars més o menys a la mateixa època. Un problema similar tracta el mateix plantejament però contempla que entre els divisors també s'hi compti el mateix enter; d'ara endavant en aquest article s'anomenarà "problema de Znám modificat".
  • In number theory, Znám's problem asks which sets of k integers have the property that each integer in the set is a proper divisor of the product of the other integers in the set, plus 1. Znám's problem is named after the Slovak mathematician Štefan Znám, who suggested it in 1972, although other mathematicians had considered similar problems around the same time. One closely related problem drops the assumption of properness of the divisor, and will be called the improper Znám problem hereafter.
  • En teoría de números, el problema de Znám pregunta que conjuntos de k enteros tienen la propiedad de que cada entero en el conjunto es un divisor propio del producto de los demás enteros del conjunto más 1. El problema de Znám toma su nombre del matemático eslovaco Štefan Znám, quien lo sugirió en 1972, aunque otros matemáticos ya estaban trabajando con problemas similares en esa misma época. Un problema directamente relacionado ignora la suposición de que el divisor sea propio; recibe por lo tanto el nombre de problema de Znám impropio.
  • Nella teoria dei numeri, il problema di Znám si chiede quali insiemi di interi hanno la proprietà che ogni elemento nell'insieme sia un divisore proprio del prodotto degli altri numeri, più 1. Il nome del problema deriva dal matematico slovacco Štefan Znám, che lo suggerì nel 1972, sebbene altri matematici abbiano considerato problemi simili nello stesso periodo. Un problema collegato fa cadere l'ipotesi di divisibilità propria, e in seguito sarà chiamato problema di Znám improprio.
  • В теории чисел задача Знама спрашивает, какие множества k целых чисел имеют свойство, что каждое целое в множестве является собственным делителем произведения других целых чисел в множестве плюс 1. Задача Знама названа по имени словацкого математика Стефана Знама, который предложил задачу в 1972, хотя другие математики рассматривали похожие задачи приблизительно в то же время. Близкая задача не требует, чтобы делитель был собственным делителем, и называется несобственной задачей Знама.
foaf:depiction
  • External Image
foaf:isPrimaryTopicOf
thumbnail
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
title
  • Znám's Problem
urlname
  • ZnamsProblem
mode
  • cs2
has abstract
  • En teoria de nombres, el problema de Znám és pregunta quins conjunts de k enters tenen la propietat que cada enter del conjunt és un divisor –sense comptar el mateix enter– del producte dels altres enters del conjunt, més 1. S'anomena en honor al matemàtic eslovac , el qual el suggerí l'any 1972; tanmateix, altres matemàtics ja havien considerat problemes similars més o menys a la mateixa època. Un problema similar tracta el mateix plantejament però contempla que entre els divisors també s'hi compti el mateix enter; d'ara endavant en aquest article s'anomenarà "problema de Znám modificat". Una solució al problema de Znám modificat es pot obtenir fàcilment per qualsevol k: els primers k termes de la seqüència de Sylvester tenen la propietat demanada. mostrà que hi ha com a mínim una solució al problema de Znám (no modificat) per tota k ≥ 5. La solució de Sun està basada en una recurrència similar a la de la seqüència de Sylvester, però amb un conjunt diferent de valors inicials. El problema de Znám està molt relacionat amb les fraccions egípcies. Se sap que només hi ha moltes solucions finites per qualsevol k fixada; no se sap, però, si té solucions fent servir només nombres senars. També romanen obertes moltes altres preguntes relatives al problema.
  • In number theory, Znám's problem asks which sets of k integers have the property that each integer in the set is a proper divisor of the product of the other integers in the set, plus 1. Znám's problem is named after the Slovak mathematician Štefan Znám, who suggested it in 1972, although other mathematicians had considered similar problems around the same time. One closely related problem drops the assumption of properness of the divisor, and will be called the improper Znám problem hereafter. One solution to the improper Znám problem is easily provided for any k: the first k terms of Sylvester's sequence have the required property. showed that there is at least one solution to the (proper) Znám problem for each k ≥ 5. Sun's solution is based on a recurrence similar to that for Sylvester's sequence, but with a different set of initial values. The Znám problem is closely related to Egyptian fractions. It is known that there are only finitely many solutions for any fixed k. It is unknown whether there are any solutions to Znám's problem using only odd numbers, and there remain several other open questions.
  • En teoría de números, el problema de Znám pregunta que conjuntos de k enteros tienen la propiedad de que cada entero en el conjunto es un divisor propio del producto de los demás enteros del conjunto más 1. El problema de Znám toma su nombre del matemático eslovaco Štefan Znám, quien lo sugirió en 1972, aunque otros matemáticos ya estaban trabajando con problemas similares en esa misma época. Un problema directamente relacionado ignora la suposición de que el divisor sea propio; recibe por lo tanto el nombre de problema de Znám impropio. Se puede dar fácilmente una solución para el problema de Znám impropio, dado cualquier k: los primeros k términos de la sucesión de Sylvester cumplen la propiedad pedida. demostró que hay al menos una solución para el problema de Znám (propio) para cualquier k ≥ 5. La solución de Sun está basada en una recurrencia similar a la de la sucesión de Sylvester, pero con un conjunto distinto de valores iniciales. El problema de Znám está íntimamente relacionado con las fracciones egipcias. Se sabe que hay solo un número finito de soluciones posibles para cada k. Entre las varias preguntas abiertas en torno al problema, se desconoce si hay alguna solución para el problema usando solo números impares.
  • Nella teoria dei numeri, il problema di Znám si chiede quali insiemi di interi hanno la proprietà che ogni elemento nell'insieme sia un divisore proprio del prodotto degli altri numeri, più 1. Il nome del problema deriva dal matematico slovacco Štefan Znám, che lo suggerì nel 1972, sebbene altri matematici abbiano considerato problemi simili nello stesso periodo. Un problema collegato fa cadere l'ipotesi di divisibilità propria, e in seguito sarà chiamato problema di Znám improprio. Si costruisce facilmente una soluzione al problema di Znám improprio prendendo i primi termini della successione di Sylvester. mostrò che esiste almeno una soluzione del problema di (proprio) per ogni . La soluzione di Sun si basa su una relazione di ricorrenza simile a quella della successione di Sylvester, ma con una differente scelta di valori iniziali. Il problema di Znám è strettamente collegato alle frazioni egizie. Si sa che esistono solo un numero finito di soluzioni per ogni fissato, ma rimane ancora sconosciuto se esistono soluzioni al problema di Znám con solo numeri dispari, insieme a molte altre questioni aperte.
  • 즈남 문제(Znám problem)는 (Štefan Znám)이 제안하는 에르되시-스트라우스 추측, 이집트 분수, 실베스터 수열 등과 연관되는 추측이다. 이것은 "임의의 정수를 유한한 단위분수들의 집합으로 표현하는것이 가능한가?"라는 질문이다. 수론에서 즈남(Znam)의 문제는, 임의의 정수 "1"을 예로 들면, 일단의 단위분수의 세트가 임의의 정수의 적절한 분산임을 설정하고, 그 단위분수들의 합과 곱의 합에서 "1"이 가능한지를 구현한다. 한편 이러한 단위분수들이 계속해서 증가되는 세트에서도 여전히 "1"의 값을 갖게되는 일단의 세트 집합이 가능한지를 예상하게 된다.
  • В теории чисел задача Знама спрашивает, какие множества k целых чисел имеют свойство, что каждое целое в множестве является собственным делителем произведения других целых чисел в множестве плюс 1. Задача Знама названа по имени словацкого математика Стефана Знама, который предложил задачу в 1972, хотя другие математики рассматривали похожие задачи приблизительно в то же время. Близкая задача не требует, чтобы делитель был собственным делителем, и называется несобственной задачей Знама. Одно решение несобственной задачи легко получить для любого k — первые k членов последовательности Сильвестра имеют требуемые свойства. Сан показал, что имеется по меньшей мере одно решение (собственной) задачи Знама для любого k ≥ 5. Решение Сана основывается на рекуррентном соотношении, подобном соотношению для последовательности Сильвестера, но с другим множеством начальных значений. Задача Знама тесно связана с египетскими дробями. Известно, что существует лишь конечное число решений для любого фиксированного k. Неизвестно, имеются ли решения задачи Знама только с нечётными числами. Имеются также некоторые другие открытые проблемы.
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software