About: Uniform polyhedron     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FUniform_polyhedron

A uniform polyhedron has regular polygons as faces and is vertex-transitive (i.e., there is an isometry mapping any vertex onto any other). It follows that all vertices are congruent. Uniform polyhedra may be regular (if also face and edge transitive), quasi-regular (if also edge transitive but not face transitive), or semi-regular (if neither edge nor face transitive). The faces and vertices need not be convex, so many of the uniform polyhedra are also star polyhedra. There are two infinite classes of uniform polyhedra, together with 75 others: Hence 5 + 13 + 4 + 53 = 75.

AttributesValues
rdfs:label
  • Políedre uniforme
  • Uniform polyhedron
  • Unuforma pluredro
  • Poliedro de aristas uniformes
  • Poliedro uniforme
  • Polyèdre uniforme
  • Poliedro uniforme
  • 一様多面体
  • 고른 다면체
  • 均勻多面體
rdfs:comment
  • En geometria, un políedre uniforme és un políedre que admet moltes simetries, les seves cares són polígons regulars i els seus vèrtex són homogenis. Però les cares no cal que siguin per força polígons convexos: per tant, molts polígons uniformes són estelats. Vegeu també: Llista de políedres uniformes
  • Un poliedro de aristas uniformes es aquel poliedro que tiene la característica de que todas sus aristas reúnen un mismo par de caras. Entre los poliedros de aristas uniformes están: * Toda la Familia de los Sólidos platónicos * Tetraedro * Cubo * Octaedro * Dodecaedro * Icosaedro * De la familia de los Sólidos de Arquímedes: * Cuboctaedro * Icosidodecaedro * De la familia de los Sólidos de Catalan: * El Rombododecaedro * El Triacontaedro rómbico.
  • Geometrian, poliedro uniformea poliedro bat da, aurpegiak poligono erregularrak dituena, eta erpinak homogeneoak. Aurpegiak ez dira zertan poligono ganbilak izan: beraz, poligono uniformeetako asko izar-poliedroak dira. Simetria asko dituzten poliedroak dira.
  • In geometria, un poliedro uniforme è un poliedro che ammette molte simmetrie, le cui facce sono poligoni regolari e i cui vertici sono omogenei. Le facce non devono però essere necessariamente convesse: molti poliedri uniformi sono quindi stellati.
  • 一様多面体(いちようためんたい)とは、全ての構成面が正多角形で、かつ頂点の形状が全て合同な立体のことである。5種類の正多面体、4種類の星型正多面体、13種類の半正多面体、その他の53種類の一様多面体で総計75種類であることが、H.S.M.コクセターらによって確認され、後にによって証明された。正角柱、反角柱、ミラーの立体などもこの条件を満たすが、一様多面体には含めないことが多い。
  • 在幾何學中,均勻多面體是一種具有正多邊形面且頂點可遞的多面體,即等角傳遞它的頂點,可以等距映射任一頂點到任何其他頂點)由此可見,所有的頂點是全等的,所以該多面體具有具有高度反射和旋轉對稱。 均勻多面體可能是正多面體(如果還面可遞,邊也可遞),擬正多面體(若邊可遞,則面不可遞)或半正多面體(既不邊可遞面也不可遞)。由於面和頂點不一定要是凸的,所以很多均勻多面體的也是星狀多面體。 不包括無限集合,有75個均勻多面體(或76,如果允許邊緣重合)。 * * 5種正多面體 * 13種阿基米德立體——兩種擬正多面體和11種半正多面體 * 星狀多面體 * 4種Kepler–Poinsot polyhedra——正非凸多面體 * 53種均勻星狀多面體——5種擬正多面體和48種半正多面體 * 1種由約翰·斯基林發現與對邊重合的星狀多面體,稱為great disnub dirhombidodecahedron (Skilling's figure)。
  • A uniform polyhedron has regular polygons as faces and is vertex-transitive (i.e., there is an isometry mapping any vertex onto any other). It follows that all vertices are congruent. Uniform polyhedra may be regular (if also face and edge transitive), quasi-regular (if also edge transitive but not face transitive), or semi-regular (if neither edge nor face transitive). The faces and vertices need not be convex, so many of the uniform polyhedra are also star polyhedra. There are two infinite classes of uniform polyhedra, together with 75 others: Hence 5 + 13 + 4 + 53 = 75.
  • Unuforma pluredro estas unuforma hiperpluredro, 3-dimensia pluredro kiu havas regulaj plurlateroj kiel edroj kaj estas vertico-transitiva. Ĉiuj ĝiaj verticoj estas , kaj la pluredro havas altan gradon de reflekta kaj turna simetrio. Unuformaj pluredroj povas esti regula, kvazaŭregula aŭ duonregula. La edroj kaj verticoj ne nepre esta konveksaj, inter unuformaj pluredroj estas ankaŭ . Malinkluzivante la malfiniajn arojn estas 75 unuformaj pluredroj (aŭ 76 se al lateroj estas permesite koincidi). La kategorioj inkluzivas:
  • Un polyèdre uniforme est un polyèdre dont les faces sont des polygones réguliers, et qui est isogonal, c'est-à-dire que pour tout couple de sommets, il existe une isométrie qui applique un sommet sur l'autre. Il en découle que tous les sommets sont congruents, et que le polyèdre possède un haut degré de symétrie par réflexion et rotation. La notion de polyèdre uniforme est généralisée, pour un nombre de dimensions quelconque, par celle de (en). Ils peuvent aussi être regroupés par groupe de symétrie, ce qui est fait ci-dessous.
  • 고른 다면체는 정다각형을 면으로 가지고 점추이(그 꼭짓점에서 추이적이다. 즉, 어떤 꼭짓점에서 다른 어떤 꼭짓점으로 등거리 맵핑이 있다)인 다면체이다. 모든 꼭짓점은 합동인 것과 같다. 다면체는 (면추이와 변추이일 경우) 정다면체일 수 있고, (변추이이지만 면추이가 아닐 경우) 준정다면체이거나 (변추이도 면추이도 아닌 경우)반정다면체일 수 있다. 면과 꼭짓점은 볼록할 필요는 없어서, 많은 고른 다면체는 별 다면체이다. 다른 75개와 두 가지의 무한한 고른 다면체의 분류가 있다. * 무한한 분류 * 각기둥 * 엇각기둥 * 볼록한 예외 * 플라톤의 다면체 5개 – 볼록 정다면체 * 아르키메데스의 다면체 13개 – 볼록 준정다면체 2개와 볼록 반정다면체 11개 * 별다면체 예외 * 케플러-푸앵소 다면체 4개 – 비볼록 정다면체 * 고른 별 다면체 53개 – 준정다면체 5개와 반정다면체 48개 존 스킬링(John Skilling)이 발견한 (스킬링의 형태)를 포함해서, 모서리의 쌍이 일치하는 많은 불가능한 고른 다면체가 있다. 고른 다면체의 개념은 높은(낮은) 차원의 도형에 적용되는 의 개념의 특별한 경우이다.
foaf:depiction
  • External Image
foaf:isPrimaryTopicOf
thumbnail
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software