In statistics the trimean (TM), or Tukey's trimean, is a measure of a probability distribution's location defined as a weighted average of the distribution's median and its two quartiles: This is equivalent to the average of the median and the midhinge: The foundations of the trimean were part of Arthur Bowley's teachings, and later popularized by statistician John Tukey in his 1977 book which has given its name to a set of techniques called exploratory data analysis. — Herbert F. Weisberg, Central Tendency and Variability
Attributes | Values |
---|
rdfs:label
| - Hiruko batezbesteko (eu)
- Trimean (en)
- 三均值 (zh)
|
rdfs:comment
| - Hiruko batez bestekoa honela kalkulatzen den zentro neurria da, hiru kuartilak haztatuz kalkulatzen dena, bigarren koartila den medianari besteen bi halako haztapena emanez: Abantaila gisa, jasankorra dela aipatu behar da, muturreko datuek ez baitute bere emaitzan eraginik. Hau dela eta, datuen azterketa esploratzailean erabili ohi da. Eragozpen gisa, esan behar da, ez duela datuetan biltzen den informazio guztia kontuan hartzen. (eu)
- 在統計學中, 三均值(TM)或图基三均值, 是概率分布中的一個概念, 由如下式定義: 其中, 為數據的兩個四分位點, 為其中位數. 三均值最初由在教學中提出, 而後由統計學家John Tukey在其於1997年出版的書籍中推廣, 並在技術中命名. 同中位數及 (上、下四分位數)相似, 而相迥於, 三均值是一個有25%的具有的. 三均值的這個屬性十分有用, 正如下面的引述所言. 作為一個分佈的中心的測量值, 三均值的一個優勢是, 它綜合了中位數和中軸數, 既反映了分佈的中心值, 也不失對極端值的注意. ——Herbert F. Weisberg,Central Tendency and Variability (zh)
- In statistics the trimean (TM), or Tukey's trimean, is a measure of a probability distribution's location defined as a weighted average of the distribution's median and its two quartiles: This is equivalent to the average of the median and the midhinge: The foundations of the trimean were part of Arthur Bowley's teachings, and later popularized by statistician John Tukey in his 1977 book which has given its name to a set of techniques called exploratory data analysis. — Herbert F. Weisberg, Central Tendency and Variability (en)
|
dct:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
Link from a Wikipage to an external page
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
has abstract
| - Hiruko batez bestekoa honela kalkulatzen den zentro neurria da, hiru kuartilak haztatuz kalkulatzen dena, bigarren koartila den medianari besteen bi halako haztapena emanez: Abantaila gisa, jasankorra dela aipatu behar da, muturreko datuek ez baitute bere emaitzan eraginik. Hau dela eta, datuen azterketa esploratzailean erabili ohi da. Eragozpen gisa, esan behar da, ez duela datuetan biltzen den informazio guztia kontuan hartzen. (eu)
- In statistics the trimean (TM), or Tukey's trimean, is a measure of a probability distribution's location defined as a weighted average of the distribution's median and its two quartiles: This is equivalent to the average of the median and the midhinge: The foundations of the trimean were part of Arthur Bowley's teachings, and later popularized by statistician John Tukey in his 1977 book which has given its name to a set of techniques called exploratory data analysis. Like the median and the midhinge, but unlike the sample mean, it is a statistically resistant L-estimator with a breakdown point of 25%. This beneficial property has been described as follows: An advantage of the trimean as a measure of the center (of a distribution) is that it combines the median's emphasis on center values with the midhinge's attention to the extremes. — Herbert F. Weisberg, Central Tendency and Variability (en)
- 在統計學中, 三均值(TM)或图基三均值, 是概率分布中的一個概念, 由如下式定義: 其中, 為數據的兩個四分位點, 為其中位數. 三均值最初由在教學中提出, 而後由統計學家John Tukey在其於1997年出版的書籍中推廣, 並在技術中命名. 同中位數及 (上、下四分位數)相似, 而相迥於, 三均值是一個有25%的具有的. 三均值的這個屬性十分有用, 正如下面的引述所言. 作為一個分佈的中心的測量值, 三均值的一個優勢是, 它綜合了中位數和中軸數, 既反映了分佈的中心值, 也不失對極端值的注意. ——Herbert F. Weisberg,Central Tendency and Variability (zh)
|
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is Link from a Wikipage to another Wikipage
of | |
is Wikipage redirect
of | |
is foaf:primaryTopic
of | |