About: Transition band     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FTransition_band

The transition band, also called the skirt, is a range of frequencies that allows a transition between a passband and a stopband of a signal processing filter. The transition band is defined by a passband and a stopband cutoff frequency or corner frequency. This is the area between where a filter "turns the corner" and where it "hits the bottom".

AttributesValues
rdfs:label
  • Transition band (en)
rdfs:comment
  • The transition band, also called the skirt, is a range of frequencies that allows a transition between a passband and a stopband of a signal processing filter. The transition band is defined by a passband and a stopband cutoff frequency or corner frequency. This is the area between where a filter "turns the corner" and where it "hits the bottom". (en)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Butterworth_lowpass.png
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
thumbnail
has abstract
  • The transition band, also called the skirt, is a range of frequencies that allows a transition between a passband and a stopband of a signal processing filter. The transition band is defined by a passband and a stopband cutoff frequency or corner frequency. This is the area between where a filter "turns the corner" and where it "hits the bottom". An example of this can be taken from a low-pass filter, commonly used in audio systems to allow the bass signal to pass through to a subwoofer, and cut out all unwanted frequencies above a defined point. If the cutoff point for such a filter is defined as 200 Hz, then in a perfect system, all frequencies above 200 Hz will be stopped and all frequencies below 200 Hz will be allowed to pass through. The transition band can be implemented to allow for a smooth fall off to avoid introducing audible peaks in amplitude. If the transition band of the example 200 Hz filter is 20 Hz, then the signal should start attenuating at 180 Hz, and finally blocked at 200 Hz. The curve that the transition band follows depends on the engineering of the filter, including component reaction time and the choice of values for the components that comprise the filter according to mathematical formula. The transition band is usually apparent in any filter system, even if it is unwanted. This can be of general importance when calculating the values required for filters used in the control of signal transmission systems, to ensure that the entire bandwidth of the desired signal is allowed to pass. The transition bandwidth of a filter largely depends on the order of the filter. For a higher order filter, the transition bandwidth is narrower than for a lower order filter. This is due to the fact that roll-off is higher for a filter of higher order. (en)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (61 GB total memory, 49 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software