About: Transformation between distributions in time–frequency analysis     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : dbo:Software, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FTransformation_between_distributions_in_time%E2%80%93frequency_analysis

In the field of time–frequency analysis, several signal formulations are used to represent the signal in a joint time–frequency domain. There are several methods and transforms called "time-frequency distributions" (TFDs), whose interconnections were organized by Leon Cohen.The most useful and popular methods form a class referred to as "quadratic" or bilinear time–frequency distributions. A core member of this class is the Wigner–Ville distribution (WVD), as all other TFDs can be written as a smoothed or convolved versions of the WVD. Another popular member of this class is the spectrogram which is the square of the magnitude of the short-time Fourier transform (STFT). The spectrogram has the advantage of being positive and is easy to interpret, but also has disadvantages, like being irre

AttributesValues
rdf:type
rdfs:label
  • Transformation between distributions in time–frequency analysis (en)
  • 時頻分析轉換關係 (zh)
rdfs:comment
  • 在時間與頻率的分析領域中,有不少的訊號的單純使用頻域或時域表示,而是同時使用時域與頻域來表示。 有幾種方法或轉換被里昂·柯恩統整組織被稱為"時頻分析",最常被使用的方法稱為「二次」或「雙線性時頻分析」,而此類方法中,最被廣泛使用的方法中以韋格納分布為其中之一,其他的時頻分布則被稱為維格納分佈的摺積版。另一個被廣泛使用的方法為頻譜圖,為「短時距傅立葉轉換」的平方,頻譜圖有著平方必為正的優點,容易由圖理解,但有著不可逆的缺點,如短時距傅立葉轉換不可逆計算,無法從頻譜圖找回原信號。而驗證這些理論與定義驗證可以參考「二次式時頻分布理論」。 本文主題雖是訊號處理領域,但是藉由量子力學的相空間來推導某些分布從A分布轉換至B分布的過程。一個信號在相同的狀況下,給與不同的時頻分布表示方式,透過簡單的平滑器或濾波器,計算出其他分布。 (zh)
  • In the field of time–frequency analysis, several signal formulations are used to represent the signal in a joint time–frequency domain. There are several methods and transforms called "time-frequency distributions" (TFDs), whose interconnections were organized by Leon Cohen.The most useful and popular methods form a class referred to as "quadratic" or bilinear time–frequency distributions. A core member of this class is the Wigner–Ville distribution (WVD), as all other TFDs can be written as a smoothed or convolved versions of the WVD. Another popular member of this class is the spectrogram which is the square of the magnitude of the short-time Fourier transform (STFT). The spectrogram has the advantage of being positive and is easy to interpret, but also has disadvantages, like being irre (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In the field of time–frequency analysis, several signal formulations are used to represent the signal in a joint time–frequency domain. There are several methods and transforms called "time-frequency distributions" (TFDs), whose interconnections were organized by Leon Cohen.The most useful and popular methods form a class referred to as "quadratic" or bilinear time–frequency distributions. A core member of this class is the Wigner–Ville distribution (WVD), as all other TFDs can be written as a smoothed or convolved versions of the WVD. Another popular member of this class is the spectrogram which is the square of the magnitude of the short-time Fourier transform (STFT). The spectrogram has the advantage of being positive and is easy to interpret, but also has disadvantages, like being irreversible, which means that once the spectrogram of a signal is computed, the original signal can't be extracted from the spectrogram. The theory and methodology for defining a TFD that verifies certain desirable properties is given in the "Theory of Quadratic TFDs". The scope of this article is to illustrate some elements of the procedure to transform one distribution into another. The method used to transform a distribution is borrowed from the phase space formulation of quantum mechanics, even though the subject matter of this article is "signal processing". Noting that a signal can be recovered from a particular distribution under certain conditions, given a certain TFD ρ1(t,f) representing the signal in a joint time–frequency domain, another, different, TFD ρ2(t,f) of the same signal can be obtained to calculate any other distribution, by simple smoothing or filtering; some of these relationships are shown below. A full treatment of the question can be given in Cohen's book. (en)
  • 在時間與頻率的分析領域中,有不少的訊號的單純使用頻域或時域表示,而是同時使用時域與頻域來表示。 有幾種方法或轉換被里昂·柯恩統整組織被稱為"時頻分析",最常被使用的方法稱為「二次」或「雙線性時頻分析」,而此類方法中,最被廣泛使用的方法中以韋格納分布為其中之一,其他的時頻分布則被稱為維格納分佈的摺積版。另一個被廣泛使用的方法為頻譜圖,為「短時距傅立葉轉換」的平方,頻譜圖有著平方必為正的優點,容易由圖理解,但有著不可逆的缺點,如短時距傅立葉轉換不可逆計算,無法從頻譜圖找回原信號。而驗證這些理論與定義驗證可以參考「二次式時頻分布理論」。 本文主題雖是訊號處理領域,但是藉由量子力學的相空間來推導某些分布從A分布轉換至B分布的過程。一個信號在相同的狀況下,給與不同的時頻分布表示方式,透過簡單的平滑器或濾波器,計算出其他分布。 (zh)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (62 GB total memory, 48 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software