About: Total curvature     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Line113863771, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FTotal_curvature

In mathematical study of the differential geometry of curves, the total curvature of an immersed plane curve is the integral of curvature along a curve taken with respect to arc length: The total curvature of a closed curve is always an integer multiple of 2π, called the index of the curve, or turning number – it is the winding number of the unit tangent vector about the origin, or equivalently the degree of the map to the unit circle assigning to each point of the curve, the unit velocity vector at that point. This map is similar to the Gauss map for surfaces.

AttributesValues
rdf:type
rdfs:label
  • Totalkrümmung
  • Total curvature
  • Варіація повороту кривої
  • 总曲率
rdfs:comment
  • In der Kurventheorie, einem Teilgebiet der Mathematik, wird die Totalkrümmung einer Kurve definiert als das Integral ihrer Krümmung , also als .
  • In mathematical study of the differential geometry of curves, the total curvature of an immersed plane curve is the integral of curvature along a curve taken with respect to arc length: The total curvature of a closed curve is always an integer multiple of 2π, called the index of the curve, or turning number – it is the winding number of the unit tangent vector about the origin, or equivalently the degree of the map to the unit circle assigning to each point of the curve, the unit velocity vector at that point. This map is similar to the Gauss map for surfaces.
  • Варіація повороту кривої — інтеграл кривини кривої за її довжиною.
  • 在数学中的曲线微分几何的研究中, 一个浸入在平面上的曲线的总曲率是曲率的曲线积分: 闭曲线的总曲率是 2π 的整数倍, 该整数称为曲线的指数或转数. 其中转数是单位切向量关于起点的绕数, 或者等价的高斯映射的次数.局部不变量曲率和整体拓扑不变量指数的关系是高维黎曼几何的代表性结果,如高斯-博内定理 。
foaf:depiction
  • External Image
foaf:isPrimaryTopicOf
thumbnail
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In der Kurventheorie, einem Teilgebiet der Mathematik, wird die Totalkrümmung einer Kurve definiert als das Integral ihrer Krümmung , also als .
  • In mathematical study of the differential geometry of curves, the total curvature of an immersed plane curve is the integral of curvature along a curve taken with respect to arc length: The total curvature of a closed curve is always an integer multiple of 2π, called the index of the curve, or turning number – it is the winding number of the unit tangent vector about the origin, or equivalently the degree of the map to the unit circle assigning to each point of the curve, the unit velocity vector at that point. This map is similar to the Gauss map for surfaces.
  • Варіація повороту кривої — інтеграл кривини кривої за її довжиною.
  • 在数学中的曲线微分几何的研究中, 一个浸入在平面上的曲线的总曲率是曲率的曲线积分: 闭曲线的总曲率是 2π 的整数倍, 该整数称为曲线的指数或转数. 其中转数是单位切向量关于起点的绕数, 或者等价的高斯映射的次数.局部不变量曲率和整体拓扑不变量指数的关系是高维黎曼几何的代表性结果,如高斯-博内定理 。
prov:wasDerivedFrom
page length (characters) of wiki page
is foaf:primaryTopic of
is Link from a Wikipage to another Wikipage of
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software