About: Terzaghi's principle     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FTerzaghi%27s_principle

Terzaghi's Principle states that when stress is applied to a porous material, it is opposed by the fluid pressure filling the pores in the material. Karl von Terzaghi's introduced the idea in a series of papers in the 1920s based on his examination of building consolidation on soil. The principle states that all quantifiable changes in stress to a porous medium are a direct result of a change in effective stress. The effective stress, , is related to total stress, , and the pore pressure, , by ,

AttributesValues
rdfs:label
  • Terzaghi's principle (en)
rdfs:comment
  • Terzaghi's Principle states that when stress is applied to a porous material, it is opposed by the fluid pressure filling the pores in the material. Karl von Terzaghi's introduced the idea in a series of papers in the 1920s based on his examination of building consolidation on soil. The principle states that all quantifiable changes in stress to a porous medium are a direct result of a change in effective stress. The effective stress, , is related to total stress, , and the pore pressure, , by , (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • Terzaghi's Principle states that when stress is applied to a porous material, it is opposed by the fluid pressure filling the pores in the material. Karl von Terzaghi's introduced the idea in a series of papers in the 1920s based on his examination of building consolidation on soil. The principle states that all quantifiable changes in stress to a porous medium are a direct result of a change in effective stress. The effective stress, , is related to total stress, , and the pore pressure, , by , where is the identity matrix. The negative sign is there because the pore pressure serves to lessen the volume-changing stress; physically this is because there is fluid in the pores which bears a part of the total stress, so partially unloading the solid matrix from normal stresses. Terzaghi's principle applies well to porous materials whose solid constituents are incompressible - soil, for example, is composed of grains of incompressible silica so that the volume change in soil during consolidation is due solely to the rearrangement of these constituents with respect to one another. Generalizing Terzaghi's principle to include compressible solid constituents was accomplished by Maurice Anthony Biot in the 1940s, giving birth to the theory of poroelasticity and poromechanics. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 67 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software