About: Tensor     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FTensor

In mathematics, a tensor is an algebraic object that describes a (multilinear) relationship between sets of algebraic objects related to a vector space. Objects that tensors may map between include vectors and scalars, and, recursively, even other tensors. Tensors can take several different forms – for example: scalars and vectors (which are the simplest tensors), dual vectors, multilinear maps between vector spaces, and even some operations such as the dot product. Tensors are defined independent of any basis, although they are often referred to by their components in a basis related to a particular coordinate system.

AttributesValues
rdf:type
rdfs:label
  • موتر
  • Tensor
  • Tenzor
  • Tensor
  • Τανυστής
  • Tensoro
  • Tensore
  • Tensor
  • Tenseur
  • Tensore
  • テンソル
  • Tensor
  • Tensor
  • Tensor
  • Тензор
  • Tensor
  • Тензор
  • 張量
rdfs:comment
  • المُوَتِّر أو المُمْتَدّ (بالإنجليزية: tensor) هو، في الرياضيات، أحد الدالات الرياضية بجانب الأعداد أو الكميات المطلقة generalized 'quantity' التي لا تتميز بوحدات للقياس. يتميز الموتّر بأنه يحتوي في خواصه خواص الأعداد المطلقة scalar، والمتجهات، والمعاملات الخطية linear operator.
  • En matemàtiques, un tensor és certa classe d'entitat algebraica de diverses components, que generalitza els conceptes d'escalar, vector i matriu d'una manera que sigui independent de qualsevol sistema de coordenades escollit. Els tensors són d'especial importància en física. En alguns casos els tensors es poden representar amb una matriu de components.
  • Tentsore bat matematika eta fisikan hainbat osagai dituen entitate aljebraiko bat da. Hautatutako koordenatu sistemarekiko independientea den bektore, eskala eta matrizea osatzen du. Oinarri bektoriala behin hartuta tensore baten osagaiak matrize-anitz batek emango dizkigu. Tentsorearen ordena bertan dauden konponente guztiak ezbairik gabe zehazteko behar diren indize kopuruak emango dizkigu: tentsore eskalar batek 0 ordena izango du; bektore bat 1 ordenako tensore bat da eta hortik gorakoak matrize batekin zehaztu behar dira.
  • テンソル(英: tensor, 独: Tensor)とは、線形的な量または線形的な幾何概念を一般化したもので、基底を選べば、多次元の配列として表現できるようなものである。しかし、テンソル自身は、特定の座標系によらないで定まる対象である。個々のテンソルについて、対応する量を記述するのに必要な配列の添字の組の数は、そのテンソルの階数とよばれる。 例えば、質量や温度などのスカラー量は階数0のテンソルだと理解される。同様にして力や運動量などのベクトル的な量は階数1のテンソルであり、力や加速度ベクトルの間の異方的な関係などをあらわす線型変換は階数2のテンソルで表される。 物理学や工学においてしばしば「テンソル」と呼ばれているものは、実際には位置や時刻を引数としテンソル量を返す関数である「テンソル場」であることに注意しなければならない。いずれにせよテンソル場の理解のためにはテンソルそのものの概念の理解が不可欠である。
  • Tensoren zijn wiskundige objecten uit de lineaire algebra en de differentiaalmeetkunde die beschouwd kunnen worden als generalisatie van vectoren en matrices. Zij vinden hun oorsprong in de natuurkunde en werden pas later in de wiskunde gepreciseerd. Tensoren zijn de centrale objecten in de algemene relativiteitstheorie. Augustin-Louis Cauchy was een van de wiskundigen die in 1822 de basis legde voor de tensorrekening.
  • Tensor – obiekt matematyczny będący uogólnieniem pojęcia wektora. Zbiór wszystkich tensorów wraz z działaniami dodawania i mnożenia przez skalar nazywa się przestrzenią tensorową. Tensory, podobnie jak wektory, mogą być swobodne i zaczepione. Rozważa się pola tensorowe (nazywane w skrócie tensorami). Tensory, które zmieniają się przy zmianie skali, ściśle nazywa się gęstościami tensorowymi. Obiektami podobnymi do tensorów są tensory spinorowe (np. spinory są analogami wektorów). Uogólnieniem tensorów i tensorów spinorowych jest tzw. obiekt geometryczny.
  • En tensor (lat. tendo, "spänna, dra åt, tänja") är ett matematiskt objekt som är en generalisering av begreppen skalär, vektor och linjär operator. Tensorer är betydelsefulla inom differentialgeometri, fysik och teknik. Formalismen utvecklades av omkring 1890 under benämningen . Einsteins allmänna relativitetsteori, utvecklad under 1910-talet, formuleras med hjälp av tensornotation, och inom kontinuummekaniken används exempelvis . Tensorer har tillkommit som ett praktiskt verktyg för att beskriva flerdimensionella objekt. Med tensorer hanteras sådana objekt mycket enklare än i utskriven komponentform.
  • Те́нзор (від лат. tendere, «тягнутись, простиратися») — математичний об'єкт, що узагальнює такі поняття як скаляр, вектор, ковектор, лінійний оператор і білінійна форма. Вивченням тензорів займається тензорне числення. В деякому базисі тензор представляється у вигляді багатовимірної таблиці (число співмножників збігається з валентністю тензора), заповненої числами (компонентами тензора). При заміні базису компоненти тензора змінюються певним чином, при цьому сам тензор не залежить від вибору базису.
  • Tenzor je v matematice objekt, který je zobecněním pojmu vektor. Zatímco složky vektoru je možné označit jedním indexem, tenzor může mít více indexů, např. . Jako tenzor T se označuje soubor reálných a nebo komplexních čísel (počet indexů je n), které se nazývají složky (komponenty) tenzoru a které se při transformují následujícím způsobem: Pokud n je počet indexů tenzoru T, nazýváme T tenzorem n-tého řádu. Část matematiky, která při své práci používá tenzory, se označuje jako tenzorový počet. Tenzory se uplatňují nejen v matematice, ale i ve fyzice.
  • Ein Tensor ist eine mathematische Funktion, die eine bestimmte Anzahl von Vektoren auf einen Zahlenwert abbildet. Er ist ein mathematisches Objekt aus der linearen Algebra, das besonders im Bereich der Differentialgeometrie Anwendung findet. Der Begriff wurde ursprünglich in der Physik eingeführt und erst später mathematisch präzisiert. In der Differentialgeometrie und den physikalischen Disziplinen werden meist keine Tensoren im Sinn der linearen Algebra betrachtet, sondern es werden Tensorfelder behandelt, die häufig einfach als Tensoren bezeichnet werden. Ein Tensorfeld ist eine Abbildung, die jedem Punkt des Raums einen Tensor zuordnet. Viele physikalische Feldtheorien handeln von Tensorfeldern. Das prominenteste Beispiel ist die allgemeine Relativitätstheorie. Das mathematische Teilge
  • Oι τανυστές (tensors) είναι γεωμετρικά αντικείμενα που μπορούν να θεωρηθούν ως γενικευμένα διανύσματα. Περιγράφουν γραμμικές σχέσεις ανάμεσα σε διανύσματα, βαθμωτά μεγέθη και άλλους τανυστές. Βασικά παραδείγματα τέτοιων σχέσεων περιλαμβάνουν το εσωτερικό γινόμενο, το εξωτερικό γινόμενο και γραμμικούς μετασχηματισμούς. Τα διανύσματα και τα βαθμωτά μεγέθη είναι επίσης τανυστές.
  • In mathematics, a tensor is an algebraic object that describes a (multilinear) relationship between sets of algebraic objects related to a vector space. Objects that tensors may map between include vectors and scalars, and, recursively, even other tensors. Tensors can take several different forms – for example: scalars and vectors (which are the simplest tensors), dual vectors, multilinear maps between vector spaces, and even some operations such as the dot product. Tensors are defined independent of any basis, although they are often referred to by their components in a basis related to a particular coordinate system.
  • En matematiko kaj fiziko, tensoro estas geometria ento etendanta la komprenaĵojn de skalaro, vektoro, kvadrata matrico kaj dulineara formo. Multaj fizikaj kvantoj estas nature ne vektoroj mem, sed rilatoj inter unu aro de vektoroj kaj la alia. Ekzemplo estas la , kiu prenas unu vektoron kiel enigo kaj produktas alian vektoron kiel eligo kaj tiel priskribas interrilaton inter la eniga kaj eliga vektoroj.
  • En mathématiques, plus précisément en algèbre multilinéaire et en géométrie différentielle, un tenseur désigne un objet très général, dont la valeur s'exprime dans un espace vectoriel. On peut l'utiliser entre autres pour représenter des applications multilinéaires ou des multivecteurs. On pourrait abusivement considérer qu'un tenseur est une généralisation à n indices du concept de matrice carrée (la matrice possède un indice ligne et un indice colonne — un tenseur peut posséder un nombre arbitraire d'indices inférieurs, covariants, et d'indices supérieurs, contravariants, à ne pas confondre avec des exposants), mais la comparaison s'arrête là car une matrice n'est qu'un simple tableau de nombres qui peut être utilisé pour représenter des objets abstraits, alors que le tenseur est, comme
  • In matematica, la nozione di tensore generalizza tutte le strutture definite usualmente in algebra lineare a partire da un singolo spazio vettoriale. Sono particolari tensori i vettori, gli endomorfismi, i funzionali lineari e i prodotti scalari. Il primo utilizzo del concetto e del termine tensore avviene nell'ambito della meccanica dei continui, in connessione con l'esigenza di descrivere le sollecitazioni e le deformazioni subite dai corpi estesi, da cui la formalizzazione della meccanica razionale.
  • Tensores são entidades geométricas introduzidas na matemática e na física para generalizar a noção de escalares, vetores e matrizes. Assim como tais entidades, um tensor é uma forma de representação associada a um conjunto de operações tais como a soma e o produto. Um exemplo mais sofisticado é o tensor tensão de Cauchy T, que toma uma direção v como entrada e produz a tensão T(v) sobre a superfície normal a v como saída, expressando assim uma relação entre estes dois vetores, mostrada na figura (direita).
  • Те́нзор (от лат. tensus, «напряжённый») — объект линейной алгебры, линейно преобразующий элементы одного линейного пространства в элементы другого.Частными случаями тензоров являются скаляры, векторы, билинейные формы и т. п. Часто тензор представляют как многомерную таблицу , заполненную числами — компонентами тензора (где — размерность векторного пространства, над которым задан тензор, а число сомножителей совпадает с т. н. валентностью или рангом тензора). Такие таблицы, в случае двумерного массива (тензор ранга 2), на письме отображают матричной записью:
  • 張量(英語:tensor)是一个可用來表示在一些向量、純量和其他張量之間的線性關係的多线性函数,這些線性關係的基本例子有內積、外積、線性映射以及笛卡儿积。其坐标在   維空間內,有  個分量的一種量,其中每個分量都是坐標的函數,而在坐標變換時,這些分量也依照某些規則作線性變換。稱為該張量的或(与矩阵的秩和阶均无关系)。 在同构的意义下,第零階張量()為純量,第一階張量()為向量, 第二階張量()則成為矩陣。例如,对于3维空间,时的张量为此向量:。由於變換方式的不同,張量分成「協變張量」(指標在下者)、「逆變張量」(指標在上者)、「混合張量」(指標在上和指標在下兩者都有)三類。 在數學裡,張量是一種幾何实体,或者说廣義上的「數量」。張量概念包括純量、向量和線性算子。張量可以用坐標系統来表达,记作純量的数组,但它是定义为「不依赖于参照系的选择的」。張量在物理和工程學中很重要。例如在中,表达器官对于水的在各个方向的微分的张量可以用来产生大脑的扫描图。工程上最重要的例子可能就是应力张量和了,它们都是,对于一般线性材料他们之间的关系由一个四阶来决定。 虽然張量可以用分量的多维数组来表示,張量理論存在的意义在于進一步说明把一个數量称为張量的涵義,而不仅仅是说它需要一定数量的有指标索引的分量。特别是,在坐標轉換時,張量的分量值遵守一定的变换法则。張量的抽象理論是線性代數分支,現在叫做多重線性代數。
rdfs:seeAlso
foaf:depiction
  • External Image
foaf:isPrimaryTopicOf
thumbnail
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software