About: Teichmller space     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Artifact100021939, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FTeichmüller_space

In mathematics, the Teichmüller space of a (real) topological (or differential) surface , is a space that parametrizes complex structures on up to the action of homeomorphisms that are isotopic to the identity homeomorphism. Each point in may be regarded as an isomorphism class of "marked" Riemann surfaces, where a "marking" is an isotopy class of homeomorphisms from to itself. The Teichmüller space has a canonical complex manifold structure and a wealth of natural metrics. The study of geometric features of these various structures is a very rich subject of research.

AttributesValues
rdf:type
rdfs:label
  • Teichmüller-Raum
  • Teichmüller space
  • Teichmüller-ruimte
  • 타이히뮐러 공간
  • Espaço de Teichmüller
  • Пространство Тайхмюллера
  • Простір Тайхмюллера
rdfs:comment
  • In der Funktionentheorie bezeichnet der Teichmüller-Raum (nach Oswald Teichmüller) einen Raum von Äquivalenzklassen kompakter Riemannscher Flächen und ermöglicht so eine Klassifikation aller kompakten Riemannschen Flächen.
  • 수학에서, 타이히뮐러 공간(영어: Teichmüller space)은 주어진 (위상수학적) 곡면의 복소 구조들의 모듈라이 공간이다. 이는 자연스럽게 복소 구조 및 다양한 계량들을 가진다.
  • In de wiskunde is een teichmüller-ruimte van een riemann-oppervlak , genoteerd als of , een complexe variëteit waarvan de punten alle van riemann-oppervlakken vertegenwoordigen. De onderliggende topologische structuren van deze Riemann-oppervlakken is dezelfde als die van . De ruimte is vernoemd naar de Duitse wiskundige Oswald Teichmüller.
  • Espaço de Teichmüller T(S) de uma superfície S topológica (ou diferencial) é um espaço que parametra estruturas complexas em S até a ação de homeomorfismos que são isotópicos para o homeomorfismo identitário. O conceito foi introduzido na década de 1930 por Oswald Teichmüller.
  • Простір Тайхмюллера — простір комплексних структур на дійсній поверхні з точністю до ізотопії тотожньому відображенню. Точку в просторі Тайхмюллера можна визначити як клас позначених ріманових поверхонь, до позначеного класом ізотопії гомеоморфізмів з поверхні в себе.
  • In mathematics, the Teichmüller space of a (real) topological (or differential) surface , is a space that parametrizes complex structures on up to the action of homeomorphisms that are isotopic to the identity homeomorphism. Each point in may be regarded as an isomorphism class of "marked" Riemann surfaces, where a "marking" is an isotopy class of homeomorphisms from to itself. The Teichmüller space has a canonical complex manifold structure and a wealth of natural metrics. The study of geometric features of these various structures is a very rich subject of research.
foaf:isPrimaryTopicOf
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software