About: Tangent indicatrix     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FTangent_indicatrix

In differential geometry, the tangent indicatrix of a closed space curve is a curve on the unit sphere intimately related to the curvature of the original curve. Let be a closed curve with nowhere-vanishing tangent vector . Then the tangent indicatrix of is the closed curve on the unit sphere given by . The total curvature of (the integral of curvature with respect to arc length along the curve) is equal to the arc length of .

AttributesValues
rdfs:label
  • Tangent indicatrix
  • Касательная индикатриса кривой
  • Дотична індикатриса кривої
rdfs:comment
  • In differential geometry, the tangent indicatrix of a closed space curve is a curve on the unit sphere intimately related to the curvature of the original curve. Let be a closed curve with nowhere-vanishing tangent vector . Then the tangent indicatrix of is the closed curve on the unit sphere given by . The total curvature of (the integral of curvature with respect to arc length along the curve) is equal to the arc length of .
  • Касательная индикатриса — сферическая кривая строящаяся по данной гладкой регулярной кривой.Эта конструкция используется в доказательствах теорем о вариации поворота, в частности теоремы Фенхеля и теоремы Фари — Милнора.
  • Дотична індикатриса — сферична крива, що будується за даною гладкою регулярною кривою. Ця конструкція використовується в доведеннях теорем про варіації повороту, зокрема теореми Фенхеля і теореми Фари — Мілнора.
foaf:isPrimaryTopicOf
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In differential geometry, the tangent indicatrix of a closed space curve is a curve on the unit sphere intimately related to the curvature of the original curve. Let be a closed curve with nowhere-vanishing tangent vector . Then the tangent indicatrix of is the closed curve on the unit sphere given by . The total curvature of (the integral of curvature with respect to arc length along the curve) is equal to the arc length of .
  • Касательная индикатриса — сферическая кривая строящаяся по данной гладкой регулярной кривой.Эта конструкция используется в доказательствах теорем о вариации поворота, в частности теоремы Фенхеля и теоремы Фари — Милнора.
  • Дотична індикатриса — сферична крива, що будується за даною гладкою регулярною кривою. Ця конструкція використовується в доведеннях теорем про варіації повороту, зокрема теореми Фенхеля і теореми Фари — Мілнора.
prov:wasDerivedFrom
page length (characters) of wiki page
is foaf:primaryTopic of
is Link from a Wikipage to another Wikipage of
is Wikipage disambiguates of
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software