About: Symmetric space     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Group100031264, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FSymmetric_space

In differential geometry, representation theory and harmonic analysis, a symmetric space is a pseudo-Riemannian manifold whose group of symmetries contains an inversion symmetry about every point. This can be studied with the tools of Riemannian geometry, leading to consequences in the theory of holonomy; or algebraically through Lie theory, which allowed Cartan to give a complete classification.

AttributesValues
rdf:type
rdfs:label
  • Symmetrischer Raum
  • Symmetric space
  • Espace symétrique
  • 대칭 공간
  • Симметрическое пространство
  • Симетричний простір
rdfs:comment
  • In der Mathematik sind symmetrische Räume eine Klasse von Riemannschen Mannigfaltigkeiten mit einem besonders hohen Grad an Symmetrien. Sie sind eine wichtige Klasse von Beispielen in Geometrie und Topologie und finden Anwendung unter anderem in Darstellungstheorie, harmonischer Analysis, Zahlentheorie, Modulformen und Physik.
  • 리만 기하학과 리 군론에서, 대칭 공간(對稱空間, 영어: symmetric space)은 일반점의 안정자군이 어떤 대합에 의하여 정의되는 동차 공간이다.
  • Симметрическое пространство — риманово многообразие, группа изометрий которого содержит центральные симметрии с центром в любой точке.
  • Симетричний простір — ріманів многовид, група ізометрій якого містить центральні симетрії з центром в будь-якій точці. Початок вивченню симетричних просторів було покладено Елі Картаном. Зокрема їм була отримана їх класифікація в 1926 році.
  • In differential geometry, representation theory and harmonic analysis, a symmetric space is a pseudo-Riemannian manifold whose group of symmetries contains an inversion symmetry about every point. This can be studied with the tools of Riemannian geometry, leading to consequences in the theory of holonomy; or algebraically through Lie theory, which allowed Cartan to give a complete classification.
  • En mathématiques, et plus spécifiquement en géométrie différentielle, un espace riemannien symétrique est une variété riemannienne qui, en chaque point, admet une isométrie involutive dont ce point est un point fixe isolé. Plus généralement, un espace symétrique est une variété différentielle munie, en chaque point, d'une involution, le tout vérifiant certaines conditions. Lorsqu'il n'y pas de risque de confusion, les espaces riemanniens symétriques sont appelés espaces symétriques. Les espaces symétriques connexes sont des espaces homogènes de groupes de Lie.
foaf:isPrimaryTopicOf
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software