About: Stefan tube     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FStefan_tube

In chemical engineering, a Stefan tube is a device that was devised by Josef Stefan in 1874. It is often used for measuring diffusion coefficients. It comprises a vertical tube, over the top of which a gas flows and at the bottom of which is a pool of volatile liquid that is maintained in a constant-temperature bath. The liquid in the pool evaporates, diffuses through the gas above it in the tube, and is carried away by the gas flow over the tube mouth at the top. One then measures the fall in the level of the liquid in the tube.

AttributesValues
rdfs:label
  • Stefan tube (en)
rdfs:comment
  • In chemical engineering, a Stefan tube is a device that was devised by Josef Stefan in 1874. It is often used for measuring diffusion coefficients. It comprises a vertical tube, over the top of which a gas flows and at the bottom of which is a pool of volatile liquid that is maintained in a constant-temperature bath. The liquid in the pool evaporates, diffuses through the gas above it in the tube, and is carried away by the gas flow over the tube mouth at the top. One then measures the fall in the level of the liquid in the tube. (en)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Stefantube.png
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
thumbnail
has abstract
  • In chemical engineering, a Stefan tube is a device that was devised by Josef Stefan in 1874. It is often used for measuring diffusion coefficients. It comprises a vertical tube, over the top of which a gas flows and at the bottom of which is a pool of volatile liquid that is maintained in a constant-temperature bath. The liquid in the pool evaporates, diffuses through the gas above it in the tube, and is carried away by the gas flow over the tube mouth at the top. One then measures the fall in the level of the liquid in the tube. The tube conventionally has a narrow diameter, in order to suppress convection. The way that a Stefan tube is modelled, mathematically, is very similar to how one can model the diffusion of perfume fragrance molecules from (say) a drop of perfume on skin or clothes, evaporating up through the air to a person's nose. There are some differences between the models. However, they turn out to have little effect on results at highly dilute vapour concentrations. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (61 GB total memory, 49 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software