About: Staring array     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Whole100003553, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FStaring_array

A staring array, also known as staring-plane array or focal-plane array (FPA), is an image sensor consisting of an array (typically rectangular) of light-sensing pixels at the focal plane of a lens. FPAs are used most commonly for imaging purposes (e.g. taking pictures or video imagery), but can also be used for non-imaging purposes such as spectrometry, LIDAR, and wave-front sensing.

AttributesValues
rdf:type
rdfs:label
  • Staring array (en)
rdfs:comment
  • A staring array, also known as staring-plane array or focal-plane array (FPA), is an image sensor consisting of an array (typically rectangular) of light-sensing pixels at the focal plane of a lens. FPAs are used most commonly for imaging purposes (e.g. taking pictures or video imagery), but can also be used for non-imaging purposes such as spectrometry, LIDAR, and wave-front sensing. (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • A staring array, also known as staring-plane array or focal-plane array (FPA), is an image sensor consisting of an array (typically rectangular) of light-sensing pixels at the focal plane of a lens. FPAs are used most commonly for imaging purposes (e.g. taking pictures or video imagery), but can also be used for non-imaging purposes such as spectrometry, LIDAR, and wave-front sensing. In radio astronomy, the FPA is at the focus of a radio telescope. At optical and infrared wavelengths, it can refer to a variety of imaging device types, but in common usage it refers to two-dimensional devices that are sensitive in the infrared spectrum. Devices sensitive in other spectra are usually referred to by other terms, such as CCD (charge-coupled device) and CMOS image sensor in the visible spectrum. FPAs operate by detecting photons at particular wavelengths and then generating an electrical charge, voltage, or resistance in relation to the number of photons detected at each pixel. This charge, voltage, or resistance is then measured, digitized, and used to construct an image of the object, scene, or phenomenon that emitted the photons. Applications for infrared FPAs include missile or related weapons guidance sensors, infrared astronomy, manufacturing inspection, thermal imaging for firefighting, medical imaging, and infrared phenomenology (such as observing combustion, weapon impact, rocket motor ignition and other events that are interesting in the infrared spectrum). (en)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (62 GB total memory, 54 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software