About: Small-angle approximation     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FSmall-angle_approximation

The small-angle approximations can be used to approximate the values of the main trigonometric functions, provided that the angle in question is small and is measured in radians: These approximations have a wide range of uses in branches of physics and engineering, including mechanics, electromagnetism, optics, cartography, astronomy, and computer science. One reason for this is that they can simplify greatly differential equations that do not need to be answered with absolute precision.

AttributesValues
rdfs:label
  • Kleinwinkelnäherung
  • Aproximación para ángulos pequeños
  • Small-angle approximation
  • Pendekatan paraksial
  • Approssimazione per angoli piccoli
  • 작은 각도 근사
  • Aproximação para ângulos pequenos
  • Малокутове наближення
rdfs:comment
  • Unter der Kleinwinkelnäherung wird die mathematische Näherung verstanden, bei der angenommen wird, der Winkel sei so hinreichend klein, dass man seinen Sinus oder Tangens durch den Winkel selbst (in Radiant) und den Kosinus durch ersetzen kann.
  • Pada optika geometris, pendekatan paraksial (en:paraxial approximation, small angle approximation) adalah sebuah pendekatan yang dipergunakan dalam (en:ray tracing) cahaya pada suatu . Sebuah sinar paraksial akan membuat sudut (θ) yang sangat kecil terhadap sumbu optis. Hal ini memungkinkan tiga pendekatan (untuk θ dalam radian) perhitungan arah rambat sinar:
  • L'approssimazione per angoli piccoli consiste nel semplificare le funzioni trigonometriche di base a funzioni più semplici quando l'angolo è molto piccolo e tende a zero. L'approssimazione si basa sugli sviluppi di Taylor-MacLaurin troncati al secondo ordine. Si ha: dove θ è l'angolo in radianti. Questa approssimazione è utile in molti ambiti di fisica e di ingegneria, tra cui meccanica, elettromagnetismo, ottica, e così via.
  • 작은 각도 근사(small-angle approximation)는 삼각함수의 값이 0에 가까워질 때 성립할 수 있는 근사이다. 이때 의 단위는 라디안. 작은 각도 근사는 역학, 전자기학, 광학, , 천문학 ,컴퓨터 과학 등 광범한 분야에서 유용하게 사용된다.
  • Малокутове наближення або апроксимація малих кутів це корисне спрощення базових тригонометричних функцій, яке буде досить точним при ліміті коли кут. Вони є усіченим рядом Тейлора для базових тригонометричних функцій за допомогою властивостей . Таке спрощення дає наступну формулу: , де θ це кут в радіанах. Апроксимація малих кутів корисна в багатьох застосуваннях фізики, включаючи механіку, електромагнетизм, оптику (де воно є основою паралаксіальної оптики), картографії, астрономії, та ін.
  • The small-angle approximations can be used to approximate the values of the main trigonometric functions, provided that the angle in question is small and is measured in radians: These approximations have a wide range of uses in branches of physics and engineering, including mechanics, electromagnetism, optics, cartography, astronomy, and computer science. One reason for this is that they can simplify greatly differential equations that do not need to be answered with absolute precision.
  • La aproximación para ángulos pequeños es una simplificación conveniente de las leyes trigonométricas que tiene una precisión aceptable cuando el ángulo tiende a cero. Surge de la linealización de las funciones trigonométricas, que se puede entender como un truncamiento de las correspondientes series de Taylor. Para un ángulo especificado en radianes: , ó , aproximación de segundo orden El error para sen x ≈ x es de 1% alrededor de los 14 grados sexagesimales (0,244 radianes). * Datos: Q1760468
  • A aproximação para ângulos pequenos é uma simplificação útil das leis da trigonometria que é apenas aproximadamente verdadeira para ângulos não-nulos, mas correta no limite em que o ângulo se aproxima de zero. Ela envolve a linearização das funções trigonométricas (truncamento de suas séries de Taylor) de forma que, quando o ângulo x é medido radianos, ou para a A aproximação para ângulos pequenos é útil em muitas áreas da física, incluindo eletromagnetismo, óptica (onde ela é a base da aproximação paraxial), cartografia, astronomia, entre outras.
foaf:depiction
  • External Image
foaf:isPrimaryTopicOf
thumbnail
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • Unter der Kleinwinkelnäherung wird die mathematische Näherung verstanden, bei der angenommen wird, der Winkel sei so hinreichend klein, dass man seinen Sinus oder Tangens durch den Winkel selbst (in Radiant) und den Kosinus durch ersetzen kann.
  • La aproximación para ángulos pequeños es una simplificación conveniente de las leyes trigonométricas que tiene una precisión aceptable cuando el ángulo tiende a cero. Surge de la linealización de las funciones trigonométricas, que se puede entender como un truncamiento de las correspondientes series de Taylor. Para un ángulo especificado en radianes: , ó , aproximación de segundo orden El error para sen x ≈ x es de 1% alrededor de los 14 grados sexagesimales (0,244 radianes). La aproximación para ángulos pequeños es empleada para abreviar cálculos de electromagnetismo, óptica (ver: aproximación paraxial), cartografía y astronomía. * Datos: Q1760468
  • The small-angle approximations can be used to approximate the values of the main trigonometric functions, provided that the angle in question is small and is measured in radians: These approximations have a wide range of uses in branches of physics and engineering, including mechanics, electromagnetism, optics, cartography, astronomy, and computer science. One reason for this is that they can simplify greatly differential equations that do not need to be answered with absolute precision. There are a number of ways to demonstrate the validity of the small-angle approximations. The most direct method is to truncate the Maclaurin series for each of the trigonometric functions. Depending on the order of the approximation, is approximated as either or as .
  • Pada optika geometris, pendekatan paraksial (en:paraxial approximation, small angle approximation) adalah sebuah pendekatan yang dipergunakan dalam (en:ray tracing) cahaya pada suatu . Sebuah sinar paraksial akan membuat sudut (θ) yang sangat kecil terhadap sumbu optis. Hal ini memungkinkan tiga pendekatan (untuk θ dalam radian) perhitungan arah rambat sinar:
  • L'approssimazione per angoli piccoli consiste nel semplificare le funzioni trigonometriche di base a funzioni più semplici quando l'angolo è molto piccolo e tende a zero. L'approssimazione si basa sugli sviluppi di Taylor-MacLaurin troncati al secondo ordine. Si ha: dove θ è l'angolo in radianti. Questa approssimazione è utile in molti ambiti di fisica e di ingegneria, tra cui meccanica, elettromagnetismo, ottica, e così via.
  • 작은 각도 근사(small-angle approximation)는 삼각함수의 값이 0에 가까워질 때 성립할 수 있는 근사이다. 이때 의 단위는 라디안. 작은 각도 근사는 역학, 전자기학, 광학, , 천문학 ,컴퓨터 과학 등 광범한 분야에서 유용하게 사용된다.
  • A aproximação para ângulos pequenos é uma simplificação útil das leis da trigonometria que é apenas aproximadamente verdadeira para ângulos não-nulos, mas correta no limite em que o ângulo se aproxima de zero. Ela envolve a linearização das funções trigonométricas (truncamento de suas séries de Taylor) de forma que, quando o ângulo x é medido radianos, ou para a A aproximação para ângulos pequenos é útil em muitas áreas da física, incluindo eletromagnetismo, óptica (onde ela é a base da aproximação paraxial), cartografia, astronomia, entre outras. A aproximação sen x ≈ x chega a um erro de 1% em cerca de 14 graus, que corresponde a cerca de 0,244 radianos.
  • Малокутове наближення або апроксимація малих кутів це корисне спрощення базових тригонометричних функцій, яке буде досить точним при ліміті коли кут. Вони є усіченим рядом Тейлора для базових тригонометричних функцій за допомогою властивостей . Таке спрощення дає наступну формулу: , де θ це кут в радіанах. Апроксимація малих кутів корисна в багатьох застосуваннях фізики, включаючи механіку, електромагнетизм, оптику (де воно є основою паралаксіальної оптики), картографії, астрономії, та ін.
prov:wasDerivedFrom
page length (characters) of wiki page
is foaf:primaryTopic of
is Link from a Wikipage to another Wikipage of
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software