About: Series (mathematics)     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Artifact100021939, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FSeries_%28mathematics%29

In mathematics, a series is, roughly speaking, a description of the operation of adding infinitely many quantities, one after the other, to a given starting quantity. The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures (such as in combinatorics), through generating functions. In addition to their ubiquity in mathematics, infinite series are also widely used in other quantitative disciplines such as physics, computer science, statistics and finance.

AttributesValues
rdf:type
rdfs:label
  • متسلسلة (رياضيات)
  • Sèrie (matemàtiques)
  • Řada (matematika)
  • Reihe (Mathematik)
  • Σειρά
  • Serio (matematiko)
  • Serie matemática
  • Serie (matematika)
  • Series (mathematics)
  • Série (mathématiques)
  • Deret (matematika)
  • Serie
  • 級数
  • 급수 (수학)
  • Szereg (matematyka)
  • Reeks (wiskunde)
  • Série (matemática)
  • Ряд (математика)
  • Serie (matematik)
  • Ряд (математика)
  • 级数
rdfs:comment
  • في الرياضيات، المتسلسلة أو السلسلة (بالإنجليزية: Series) هي مجموع لمتتالية من الحدود حيث قد تكون هذه الحدود أعداداً أو دالات. يتم توليد حدود المتسلسلة عادة من خلال قاعدة معينة أو صيغة رياضية أو خوارزمية أو تعاقب من القياسات أو حتى بواسطة توليد الأعداد العشوائية مثلا. عندما يكون هناك حدود لانهائية فإن المتسلسلة تدعى متسلسلة لانهائية. على عكس المجاميع المنتهية، تحتاج المتسلسلات لفهم وتخطيط بعض أدوات التحليل الرياضي.
  • Eine Reihe, selten Summenfolge und vor allem in älteren Darstellungen auch unendliche Reihe genannt, ist ein Objekt aus dem mathematischen Teilgebiet der Analysis. Anschaulich ist eine Reihe eine Summe mit unendlich vielen Summanden. Präzise wird eine Reihe als eine Folge definiert, deren Glieder die Partialsummen einer anderen Folge sind. Wenn man die Zahl 0 zur Indexmenge zählt, ist die -te Partialsumme die Summe der ersten (von den unendlich vielen) Summanden. Falls die Folge dieser Partialsummen einen Grenzwert besitzt, so wird dieser der Wert oder die Summe der Reihe genannt.
  • Matematikan, seriea batura moduan adierazten den segida matematiko bat da: Serieen azterketaren helburu nagusia batura kalkulatzea da, bereziki n infiniturantz doan kasuan. Baturak, limiteak zehazkiago, balio jakina hartzen badu, serie konbergentea dela esaten da; bestela, esaterako batura infinitua denean, serie dibergentea dela esaten da.
  • 数学における級数 (きゅうすう、英: series) とは、ひと口に言えば数や関数など互いに足すことのできる数学的対象の列について考えられる無限項の和のことである。ただし「無限の項の総和」が何を表しているのかということはしばしば解析学の言葉を用いて様々な場合に意味を与える(の節を参照)ことができるが、そのようなことができない「発散する級数」もあれば、級数自体を新たな形式的対象としてとらえることもある。小さくなっていく実数を項とする級数の収束性については様々な判定条件が与えられている。 級数を表す記法として、和記号 ∑ を用いた表現 ∑ an や三点リーダ ⋯ を用いた表現 a0 + a1 + ⋯ などがある。 有限個の項以外は 0 とすることで有限個の対象の和を表すこともでき、無限項の和であることを特に強調する場合には無限級数とも言う。無限の項の和の形に表された級数が何を表しているかということは一見必ずしも明らかではないため、何らかの意味付けを与えなければならない。最もよく採用される理解の方法は、有限個の項の和が収束する先を無限級数の値とすることである。例えば、 より となる。このほかに、解析接続などの手法により、みかけ上発散している級数に対して  (1+2+3+4+…を参照のこと) のような等式が意味付けされることもある。
  • 수학에서, 급수(級數, 영어: series, ∑an)는 수열의 모든 항을 더한 것, 즉 수열의 합이다. 항의 개수가 유한한 유한급수(有限級數, 영어: finite series)와 항의 개수가 무한한 무한급수(無限級數, 영어: infinite series)로 분류된다. 무한급수의 경우, 항을 더해가면서 합이 어떤 값에 한없이 가까워지는 급수인 수렴급수와 그렇지 않은 발산 급수로 분류된다. 급수의 항은 실수 · 복소수, 또는 벡터 · 행렬 · 함수 · 난수 등일 수 있으며, 이들은 주로 공식이나 알고리즘으로 표현된다. 유한급수는 대수학의 초등적인 방법으로도 충분히 다룰 수 있으나, 무한급수에 대한 깊이 있는 분석은 해석학적 수단, 특히 극한의 개념을 필요로 한다.수열의 합에는 Σ(시그마, sigma) 기호가 쓰인다.
  • Szereg – konstrukcja umożliwiająca wykonanie uogólnionego dodawania przeliczalnej liczby składników. Przykładem znanego szeregu jest dychotomia Zenona z Elei Wyrazy szeregu często powstają w wyniku zastosowania pewnej reguły, takiej jak np. wzór, czy algorytm. W przeciwieństwie do sumowania, do pełnego zrozumienia i manipulowania nimi szeregi wymagają narzędzi analizy matematycznej. Poza ich wszechobecnością w samej matematyce szeregi szeroko stosuje się w innych dyscyplinach ilościowych takich jak fizyka, czy informatyka; szczególnie ważne są rozmaite szeregi funkcyjne, w tym trygonometryczne, na czele z szeregiem Fouriera, czy potęgowe (za pomocą których można przybliżać z dowolną dokładnością wiele funkcji).
  • Em matemática, define-se uma série ou série infinita, a partir de uma sequência , a soma infinita
  • En serie är en summa av ett uppräkneligt antal termer. Serien kan vara ändlig eller oändlig. Om termerna minskar tillräckligt fort kan summan av en oändlig serie vara ändlig, trots att antalet termer är oändligt. Man säger då att den konvergerar.
  • 在数学中,一个有穷或无穷的序列的和称为级数。如果序列是有穷序列,其和称为有穷级数;反之,称为无穷级数(一般简称为级数)。序列中的项称作级数的通项(或一般项)。级数的通项可以是实数、矩阵或向量等常量,也可以是关于其他变量的函数,不一定是一个数。一般的,如果级数的通项是常量,则称之为常数项级数,如果级数的通项是函数,则称之为函数项级数。常见的简单有穷数列的级数包括等差数列和等比数列的级数。 有穷数列的级数一般通过初等代数的方法就可以求得。无穷级数有发散和收敛的区别,称为无穷级数的敛散性。判断无穷级数的敛散性是无穷级数研究中的主要工作。无穷级数在收敛时才會有一个和;发散的无穷级数在一般意义上没有和,但可以用一些别的方式来定义。 无穷级数的研究更多的需要数学分析的方法来解决。无穷级数一般写作、或者,级数收敛时,其和通常被表示为,其中符号 称为求和号。
  • En matemàtiques, una sèrie és la suma dels termes d'una successió. Normalment es representa una sèrie amb termes com on és l'índex final de la sèrie. Les sèries infinites són aquelles on el subíndex agafa el valor d'absolutament tots els nombres naturals, és a dir, . L'estudi de les sèries és un dels àmbits principals de l'anàlisi matemàtica i els seus resultats són vitals per múltiples disciplines, incloent-hi la física, la computació, l'estadística i l'economia.
  • Řada (také nekonečná řada) je matematický výraz ve tvaru , kde je nějaká posloupnost. Pokud jsou členy řady tvořeny čísly, tzn. každý člen závisí pouze na svém pořadovém čísle , pak hovoříme o číselných řadách (řadách s konstantními členy). Každý prvek řady však může záviset nejen na svém pořadovém čísle , ale také na dalších parametrech. Takové řady označujeme jako funkční (popř. také funkcionální). Funkční řada je řada, jejímiž členy jsou funkce. Funkční řadu, kterou získáme z funkční posloupnosti , vyjadřuje výraz pro , kde je vzájemný průnik definičních oborů funkcí až .
  • Στα μαθηματικά ονομάζουμε σειρά το άθροισμα των όρων μιας ακολουθίας. Οι σειρές διαχωρίζονται σε πεπερασμένες και , στις πρώτες έχουν ορισθεί ο πρώτος και ο τελευταίος όρος, ενώ στις άπειρες οι όροι συνεχίζονται επ' αόριστον. Για την ακρίβεια, σειρά ονομάζεται το άθροισμα των όρων μιας άπειρης ακολουθίας Το παραπάνω το γράφουμε πιο σύντομα χρησιμοποιώντας το σύμβολο του αθροίσματος Σ Ένα παράδειγμα είναι η μαθηματική αναπαράσταση του παραδόξου της διχοτόμησης του Ζήνωνα:
  • In mathematics, a series is, roughly speaking, a description of the operation of adding infinitely many quantities, one after the other, to a given starting quantity. The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures (such as in combinatorics), through generating functions. In addition to their ubiquity in mathematics, infinite series are also widely used in other quantitative disciplines such as physics, computer science, statistics and finance.
  • Serio en matematiko estas vico u, konsiderata kune kun ties vico v de partaj sumoj: vn=u0+u1+... +un, t.e. v1=u0+u1v2=u0+u1+u2....vj=u0+u1+... +uj......vn=u0+u1+... +uj+... +un Pri maksimuma donita entjero n, la serio estas finia serio, kaj serio kun nefinia nombro de termoj estas nefinia serio. La harmona serio estas tiu serio, kies ĝenerala termo egalas al 1/n; ĝi ne konverĝas. La geometria serio estas tiu, kiu baziĝas sur geometria progresio; ĝi konverĝas, nur se la absoluta valoro de ĝia kvociento estas strikte malpli granda ol 1. Fonto: ReVo
  • En matemáticas, una serie es la generalización de la noción de suma aplicada a los términos de una sucesión matemática. Informalmente, es el resultado de sumar los términos: lo que suele escribirse en forma más compacta con el símbolo de sumatorio: El estudio de las series consiste en la evaluación de la suma de un número finito n de términos sucesivos, y mediante un paso al límite identificar el comportamiento de la serie a medida que n crece indefinidamente.
  • Deret (bahasa Inggris: series) adalah jumlah dari elemen-elemen (term; jamak: terms) dalam suatu urutan. Urutan dan deret finit (atau terhingga) mempunyai elemen pertama dan terakhir yang terdefinisi, sedangkan Urutan dan deret infinit (atau tak terhingga) berlangsung terus menerus tak terbatas. Dalam matematika, jika ada suatu urutan bilangan { an }, maka suatu deret secara informal adalah hasil dari penambahan semua elemen-elemen itu bersama-sama: a1 + a2 + a3 + · · ·. Ini dapat ditulis lebih singkat menggunakan simbol ∑. Contohnya adalah deret terkenal dari Paradoks Zeno dan :
  • En mathématiques, la notion de série permet de généraliser la notion de somme finie. Étant donnée une suite de terme général un, étudier la série de terme général un c'est étudier la suite obtenue en prenant la somme des premiers termes de la suite (un), autrement dit la suite de terme général Sn défini par : . La notion de série peut être étendue à des sommes infinies dont les termes un ne sont pas nécessairement des nombres, mais par exemple des vecteurs, des fonctions ou des matrices.
  • In matematica, una serie è la somma degli elementi di una successione, appartenenti in generale ad uno spazio vettoriale topologico. Si tratta di una generalizzazione dell'operazione di addizione, che può essere in tal modo estesa al caso in cui partecipano infiniti termini. Di particolare importanza in analisi complessa sono le serie di funzioni che sono serie di potenze, come la serie geometrica e la serie di Taylor. Le serie di funzioni costituiscono inoltre efficaci strumenti per lo studio delle funzioni speciali e per la risoluzione di equazioni differenziali.
  • Het wiskundige begrip reeks is een uitbreiding van de optelling van rationale getallen, reële getallen, complexe getallen, functies, etc., tot het geval van een oneindige rij termen. Een reeks wordt genoteerd als een uitdrukking van de vorm Voor een gegeven ruimte waarin de optelling is gedefinieerd, zoals de reële getallen, is er aldus een eenduidig verband tussen de rijen termen uit die ruimte, en de reeksen. De eventuele uitkomst van de sommatie wordt, uitgedrukt in de termen van de reeks, hetzelfde genoteerd als de reeks, dus .
  • Ряд, называемый также бесконечная сумма — одно из центральных понятий математического анализа. В простейшем случае ряд записывается как бесконечная сумма чисел: Краткая запись: Здесь — последовательность вещественных или комплексных чисел; эти числа называются членами ряда. Чтобы присвоить числовому ряду значение суммы, рассмотрим последовательность «частичных сумм», которые получаются, если оборвать бесконечную сумму на каком-то члене:
  • Числовий ряд — числова послідовність, яку розглядають разом з іншою послідовністю, котра називається послідовністю часткових сум (ряду). Розглядаються числові ряди двох видів: * Дробові числові ряди — вивчаються в математичному аналізі; * Комплексні числові ряди — вивчаються в комплексному аналізі; Важливіше питання дослідження числових рядів — це збіжність числових рядів.Числові ряди застосовуються як система наближень до чисел.Узагальненням поняття ряду є поняття . або, із використанням знаку суми,
foaf:isPrimaryTopicOf
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software