About: Rotations and reflections in two dimensions     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FRotations_and_reflections_in_two_dimensions

In geometry, two-dimensional rotations and reflections are two kinds of Euclidean plane isometries which are related to one another. A rotation in the plane can be formed by composing a pair of reflections. First reflect a point P to its image P′ on the other side of line L1. Then reflect P′ to its image P′′ on the other side of line L2. If lines L1 and L2 make an angle θ with one another, then points P and P′′ will make an angle 2θ around point O, the intersection of L1 and L2. I.e., angle POP′′ will measure 2θ. and likewise for a reflection,

AttributesValues
rdfs:label
  • Rotaciones y reflexiones en dos dimensiones (es)
  • Rotations and reflections in two dimensions (en)
rdfs:comment
  • En geometría bidimensional, rotaciones y reflexiones son dos tipos de isometrías en el plano euclídeo que están relacionadas entre sí.​ (es)
  • In geometry, two-dimensional rotations and reflections are two kinds of Euclidean plane isometries which are related to one another. A rotation in the plane can be formed by composing a pair of reflections. First reflect a point P to its image P′ on the other side of line L1. Then reflect P′ to its image P′′ on the other side of line L2. If lines L1 and L2 make an angle θ with one another, then points P and P′′ will make an angle 2θ around point O, the intersection of L1 and L2. I.e., angle POP′′ will measure 2θ. and likewise for a reflection, (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • En geometría bidimensional, rotaciones y reflexiones son dos tipos de isometrías en el plano euclídeo que están relacionadas entre sí.​ (es)
  • In geometry, two-dimensional rotations and reflections are two kinds of Euclidean plane isometries which are related to one another. A rotation in the plane can be formed by composing a pair of reflections. First reflect a point P to its image P′ on the other side of line L1. Then reflect P′ to its image P′′ on the other side of line L2. If lines L1 and L2 make an angle θ with one another, then points P and P′′ will make an angle 2θ around point O, the intersection of L1 and L2. I.e., angle POP′′ will measure 2θ. A pair of rotations about the same point O will be equivalent to another rotation about point O. On the other hand, the composition of a reflection and a rotation, or of a rotation and a reflection (composition is not commutative), will be equivalent to a reflection. The statements above can be expressed more mathematically. Let a rotation about the origin O by an angle θ be denoted as Rot(θ). Let a reflection about a line L through the origin which makes an angle θ with the x-axis be denoted as Ref(θ). Let these rotations and reflections operate on all points on the plane, and let these points be represented by position vectors. Then a rotation can be represented as a matrix, and likewise for a reflection, With these definitions of coordinate rotation and reflection, the following four identities hold: These equations can be proved through straightforward matrix multiplication and application of trigonometric identities, specifically the sum and difference identities. The set of all reflections in lines through the origin and rotations about the origin, together with the operation of composition of reflections and rotations, forms a group. The group has an identity: Rot(0). Every rotation Rot(φ) has an inverse Rot(−φ). Every reflection Ref(θ) is its own inverse. Composition has closure and is associative, since matrix multiplication is associative. Notice that both Ref(θ) and Rot(θ) have been represented with orthogonal matrices. These matrices all have a determinant whose absolute value is unity. Rotation matrices have a determinant of +1, and reflection matrices have a determinant of −1. The set of all orthogonal two-dimensional matrices together with matrix multiplication form the orthogonal group: O(2). The following table gives examples of rotation and reflection matrix : (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (61 GB total memory, 49 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software