About: Roman surface     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatSurfaces, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FRoman_surface

In mathematics, the Roman surface or Steiner surface is a self-intersecting mapping of the real projective plane into three-dimensional space, with an unusually high degree of symmetry. This mapping is not an immersion of the projective plane; however, the figure resulting from removing six singular points is one. Its name arises because it was discovered by Jakob Steiner when he was in Rome in 1844. The simplest construction is as the image of a sphere centered at the origin under the map This gives an implicit formula of

AttributesValues
rdf:type
rdfs:label
  • Römische Fläche (de)
  • Steinersche Fläche (de)
  • Superficie de Steiner (es)
  • Surface romaine (fr)
  • Superficie di Steiner (it)
  • Roman surface (en)
rdfs:comment
  • La superficie de Steiner, descubierta en 1844 por el matemático suizo Jakob Steiner, es una inmersión auto-intersecante del plano proyectivo real en el espacio tridimensional, con un grado de simetría inusualmente alto. Se trata de una superficie de cuarto grado, con la particularidad de que cada uno de sus planos tangentes se cruza con la superficie en un par de cónicas.​ (es)
  • Steinersche Flächen sind in der Projektiven Geometrie spezielle Flächen, auf denen Scharen von Kegelschnitten liegen. Sie sind nach Jakob Steiner (1796–1863) benannt, der sie 1838 bei seinem Aufenthalt in Rom fand. Spezielle Steinerflächen werden deshalb auch Römer- oder Römische Flächen genannt. Die Steinerschen Flächen sind von Ernst Eduard Kummer und Karl Weierstraß weiter untersucht worden.Eine Steinerfläche ist eine durch quadratische Polynome in zwei Variablen gegebene Fläche im dreidimensionalen Raum: (de)
  • In mathematics, the Roman surface or Steiner surface is a self-intersecting mapping of the real projective plane into three-dimensional space, with an unusually high degree of symmetry. This mapping is not an immersion of the projective plane; however, the figure resulting from removing six singular points is one. Its name arises because it was discovered by Jakob Steiner when he was in Rome in 1844. The simplest construction is as the image of a sphere centered at the origin under the map This gives an implicit formula of (en)
  • La surface romaine (ainsi appelée parce que Jakob Steiner était à Rome quand il l'a conçue) est une application auto-intersectante du plan projectif réel dans l'espace à trois dimensions, avec un haut degré de symétrie. Cette application est localement un plongement topologique, mais n'est pas une immersion (au sens différentiel) du plan projectif ; cependant elle en devient une lorsqu'on enlève de l'image six points singuliers. Elle s'obtient en prenant l'image de la sphère de rayon unité centrée à l'origine par l'application x = cos θ cos φ sin φy = sin θ cos φ sin φz = cos θ sin θ cos2 φ (fr)
  • La superficie di Steiner, scoperta dal matematico svizzero Jakob Steiner, è un'immersione auto-intersecante del piano proiettivo reale nello spazio 3-dimensionale, con un inusuale alto grado di simmetria. Questa applicazione non è un'immersione del piano proiettivo; comunque, la figura risultante dalla rimozione di sei punti singolari lo è. La costruzione più semplice è l'immagine di una sfera centrata nell'origine sotto l'azione della funzione . Ciò conduce alla formula implicita: (it)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/JointPairOfHyperbolicParaboloids.png
  • http://commons.wikimedia.org/wiki/Special:FilePath/RomanSurfaceFrontalView.png
  • http://commons.wikimedia.org/wiki/Special:FilePath/RomanSurfaceSidewaysView.png
  • http://commons.wikimedia.org/wiki/Special:FilePath/RomanSurfaceTopView.png
  • http://commons.wikimedia.org/wiki/Special:FilePath/RomanTetrahedron.png
  • http://commons.wikimedia.org/wiki/Special:FilePath/Steiner's_Roman_Surface.gif
  • http://commons.wikimedia.org/wiki/Special:FilePath/ThreeJointHyperbolicParaboloidsTopView.png
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
thumbnail
title
  • Roman Surface (en)
urlname
  • RomanSurface (en)
has abstract
  • Steinersche Flächen sind in der Projektiven Geometrie spezielle Flächen, auf denen Scharen von Kegelschnitten liegen. Sie sind nach Jakob Steiner (1796–1863) benannt, der sie 1838 bei seinem Aufenthalt in Rom fand. Spezielle Steinerflächen werden deshalb auch Römer- oder Römische Flächen genannt. Die Steinerschen Flächen sind von Ernst Eduard Kummer und Karl Weierstraß weiter untersucht worden.Eine Steinerfläche ist eine durch quadratische Polynome in zwei Variablen gegebene Fläche im dreidimensionalen Raum: In affinen Koordinaten ist sie durch eine Gleichung höchstens vierten Grades gegeben. Dahinter steckt folgende Konstruktion: Man bettet die reelle projektive Ebene, gegeben durch homogene Koordinaten , in den projektiven 5-dimensionalen Raum ein, mit homogenen Koordinaten (Veronese-Fläche): Dann projiziert man durch Multiplikation mit einer 6 × 4-Matrix auf den vierdimensionalen Raum, was vier Linearkombinationen der oben angegebenen sechs homogenen Koordinaten ergibt: . Als homogene Koordinaten des dreidimensionalen projektiven Raums aufgefasst (bei diesem Übergang entstehen Singularitäten der Fläche) ergibt sich die oben angegebene Darstellung der Steinerfläche. (de)
  • La superficie de Steiner, descubierta en 1844 por el matemático suizo Jakob Steiner, es una inmersión auto-intersecante del plano proyectivo real en el espacio tridimensional, con un grado de simetría inusualmente alto. Se trata de una superficie de cuarto grado, con la particularidad de que cada uno de sus planos tangentes se cruza con la superficie en un par de cónicas.​ (es)
  • La surface romaine (ainsi appelée parce que Jakob Steiner était à Rome quand il l'a conçue) est une application auto-intersectante du plan projectif réel dans l'espace à trois dimensions, avec un haut degré de symétrie. Cette application est localement un plongement topologique, mais n'est pas une immersion (au sens différentiel) du plan projectif ; cependant elle en devient une lorsqu'on enlève de l'image six points singuliers. Elle s'obtient en prenant l'image de la sphère de rayon unité centrée à l'origine par l'application Comme , passe au quotient et définit une application du plan projectif réeldans . La surface romaine apparaît ainsi comme la surface de d'équation implicite privée des points des 3 axes de coordonnées dont la distanceà l'origine est supérieure à 1/2.Chacune de ces présentations permet de voir qu'elle est invariante par permutation des coordonnées, et doncqu'elle possède les symétries d'un tétraèdre régulier. En partant d'une paramétrisation de la sphère en termes de longitude (θ) et latitude (φ), on obtient les équations paramétriques suivantes de la surface romaine : x = cos θ cos φ sin φy = sin θ cos φ sin φz = cos θ sin θ cos2 φ L'origine est un point triple et chacun des plans xy, yz, et xz est tangent à la surface. Les autres points d'auto-intersection sont des points doubles, définissant le long des trois axes des segments dont les extrémités sont des (en)[réf. souhaitée]. Cette surface possède la symétrie du tétraèdre. C'est un type particulier (le type 1) de surface de Steiner, qui est une projection linéaire sur d'une surface de Véronèse dans (fr)
  • In mathematics, the Roman surface or Steiner surface is a self-intersecting mapping of the real projective plane into three-dimensional space, with an unusually high degree of symmetry. This mapping is not an immersion of the projective plane; however, the figure resulting from removing six singular points is one. Its name arises because it was discovered by Jakob Steiner when he was in Rome in 1844. The simplest construction is as the image of a sphere centered at the origin under the map This gives an implicit formula of Also, taking a parametrization of the sphere in terms of longitude (θ) and latitude (φ), gives parametric equations for the Roman surface as follows: The origin is a triple point, and each of the xy-, yz-, and xz-planes are tangential to the surface there. The other places of self-intersection are double points, defining segments along each coordinate axis which terminate in six pinch points. The entire surface has tetrahedral symmetry. It is a particular type (called type 1) of Steiner surface, that is, a 3-dimensional linear projection of the Veronese surface. (en)
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 53 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software