In metric space theory and Riemannian geometry, the Riemannian circle is a great circle equipped with its great-circle distance. It is the circle equipped with its intrinsic Riemannian metric of a compact one-dimensional manifold of total length 2π, or the extrinsic metric obtained by restriction of the intrinsic metric on the sphere, as opposed to the extrinsic metric obtained by restriction of the Euclidean metric to the unit circle in the plane. Thus, the distance between a pair of points is defined to be the length of the shorter of the two arcs into which the circle is partitioned by the two points.
Attributes | Values |
---|---|
rdf:type | |
rdfs:label |
|
rdfs:comment |
|
foaf:depiction | |
foaf:isPrimaryTopicOf | |
thumbnail | |
dct:subject | |
Wikipage page ID |
|
Wikipage revision ID |
|
Link from a Wikipage to another Wikipage |
|
sameAs | |
dbp:wikiPageUsesTemplate | |
has abstract |
|
prov:wasDerivedFrom | |
page length (characters) of wiki page |
|
is foaf:primaryTopic of | |
is Link from a Wikipage to another Wikipage of | |
is Wikipage disambiguates of |