About: Ricci curvature     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Idea105833840, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FRicci_curvature

In differential geometry, the Ricci curvature tensor, named after Gregorio Ricci-Curbastro, is a geometric object which is determined by a choice of Riemannian or pseudo-Riemannian metric on a manifold. It can be considered, broadly, as a measure of the degree to which the geometry of a given metric differs from that of ordinary Euclidean space or pseudo-Euclidean space.

AttributesValues
rdf:type
rdfs:label
  • Tensor de Ricci
  • Ricciho tenzor
  • Ricci-Tensor
  • Tensor de Ricci
  • Ricci curvature
  • Tensore di curvatura di Ricci
  • リッチテンソル
  • 리치 곡률 텐서
  • Ricci-tensor
  • Tensor de curvatura de Ricci
  • Тензор Риччи
  • Тензор Річчі
  • 里奇曲率張量
rdfs:comment
  • In geometria differenziale il tensore di Ricci è un tensore che misura la curvatura di una varietà riemanniana. Si ottiene contraendo due indici del tensore di Riemann. Il tensore di Ricci, che deve il suo nome a Gregorio Ricci Curbastro, è un ingrediente dell'equazione di campo di Einstein ed è quindi importante per la formulazione della relatività generale. Il tensore di Ricci è un tensore simmetrico di tipo (0,2), come il tensore metrico. Il tensore misura il modo in cui il volume varia localmente rispetto all'usuale volume di uno spazio euclideo.
  • 리만 기하학에서, 리치 곡률 텐서(Ricci曲率tensor, 영어: Ricci curvature tensor)는 리만 다양체의 곡률을 나타내는 2차 텐서장으로, 리만 곡률 텐서의 대각합이다. 부피의 왜곡을 나타내는 것으로 해석할 수 있다.
  • De ricci-tensor is een wiskundig object uit de differentiaalmeetkunde, genoemd naar Gregorio Ricci-Curbastro. Het is een object dat uitdrukt in welke mate een ruimte verschilt van de gewone euclidische ruimte. Er kan ook een meetkundige interpretatie worden gegeven aan de ricci-tensor, namelijk de verstoring van een eenheidsvolume in de gegeven ruimte.
  • Em geometria diferencial, o tensor de curvatura de Ricci, ou simplesmente tensor de Ricci, é um tensor bivalente, obtido como um traço do tensor de curvatura. Pode ser pensado como um laplaciano do tensor métrico no caso das variedades de Riemann. Nas dimensões 2 e 3, o tensor de curvatura é determinado totalmente pela curvatura de Ricci. Pode-se pensar na curvatura de Ricci em uma variedade de Riemann como um operador no espaço tangente. Se este operador é simplesmente multiplicado por uma constante, então temos . A curvatura de Ricci é proporcional ao tensor métrico neste caso.
  • Тензор Риччи, названный в честь Риччи-Курбастро, задаёт один из способов измерения кривизны многообразия, то есть степени отличия геометрии многообразия от геометрии плоского евклидова пространства. Тензор Риччи, точно так же как метрический тензор, является симметричной билинейной формой на касательном пространстве риманова многообразия. Грубо говоря, тензор Риччи измеряет деформацию объёма, то есть степень отличия n-мерных областей n-мерного многообразия от аналогичных областей евклидова пространства. Смотри геометрический смысл тензора Риччи. Обычно обозначается или .
  • 在微分幾何中,類似度量張量,里奇張量也是一個在黎曼流形每點的切空間上的對稱雙線性形式。以格雷戈里奥·里奇-库尔巴斯托罗(Gregorio Ricci-Curbastro)為名的里奇張量或里奇曲率張量(Ricci curvature tensor)。提供了一個數據去描述給定的黎曼度規(Riemannian metric)所決定的體積究竟偏離尋常歐幾里得 n- 空間多少的程度。粗略地講,里奇張量是用來描述「體積扭曲」的一個值;也就是說,它指出了n-維流形中給定區域之n-維體積,其和歐幾里得n-空間中與其相當之區域的體積差異程度。更精確的描述請見下文「直接的幾何意義」段落。
  • Тензор Річчі, названий на честь Річчі-Курбастро, задає один із способів вимірювання кривини многовиду, тобто ступеня відмінності геометрії многовиду від геометрії плоского евклідового простору. Тензор Річчі, точно так само як метричний тензор, є симетрична білінійна форма на дотичному просторі ріманового многовиду. Грубо кажучи, тензор Річчі вимірює деформацію об'єму, тобто ступінь відмінності n-мірних областей n-мірного многовиду від аналогічних областей евклідового простору. Зазвичай позначається або .
  • En geometria diferencial, el tensor de curvatura de Ricci (anomenat així a partir de Gregorio Ricci-Curbastro) és un tensor—(0,2)—bivalent, obtingut com una traça del complet. El tensor de Ricci es pot representar segons els vectors u i v, usualment representat per Ric(u,v) i es pot definir com a la traça de l'endomorfisme on R és el . En , es pot escriure (fent servir la notació d'Einstein) on . És a dir, es pot expressar com a un laplacià del tensor mètric riemanià en el cas de les varietats de Riemann. En dimensions 2 i 3 el és determinat totalment per la curvatura de Ricci.
  • V diferenciální geometrii Ricciho tenzor, pojmenovaný podle Gregoriho Ricci-Curbastroa, reprezentuje množství, o které se objem úzkého kuželovitého kusu malé geodetické koule v zakřivené Riemannově tenzoru odchyluje od standardní koule v Eukleidovském prostoru. Jako takový poskytuje jeden ze způsobů měření míry, ke kterému by se geometrie určená danou Riemannianovou metrikou mohla lišit od tohoto běžného Eukleidovského n-rozměrného prostoru. Ricciho tenzor je definován na jakémkoliv pseudo- riemannovově tenzoru jako stopa Riemannova tenzoru. Stejně jako metrika samotná, i Ricciho tenzor je symetrická bilineární forma na tečném prostoru tenzoru (Besse 1987, str. 43).
  • In differential geometry, the Ricci curvature tensor, named after Gregorio Ricci-Curbastro, is a geometric object which is determined by a choice of Riemannian or pseudo-Riemannian metric on a manifold. It can be considered, broadly, as a measure of the degree to which the geometry of a given metric differs from that of ordinary Euclidean space or pseudo-Euclidean space.
  • En geometría diferencial, el tensor de curvatura de Ricci o simplemente, tensor de Ricci, que suele notarse por los símbolos o Ric, es un tensor simétrico bivalente obtenido como una traza del tensor de curvatura, que, como aquel, puede definirse en cualquier variedad dotada de una conexión afín. Fue introducido en 1903 por el matemático italiano G. Ricci.
  • 微分幾何学において、リッチ曲率テンソル (英: Ricci curvature tensor) とは、歪んだリーマン多様体上の測地球の体積がユークリッド空間上の球体からどれだけずれるかを表す量である。グレゴリオ・リッチ=クルバストロに因んでその名がある。あるリーマン計量が与えられたとき、その記述する幾何が通常の n 次元ユークリッド空間からどれだけ違うか表わす尺度として使うことができる。リッチテンソルはどんな擬リーマン多様体に対しても、リーマン曲率テンソルのトレースとして定義される。計量それ自体と同様、リッチテンソルは多様体の接空間上の対称双線型形式である(, p. 43)。
foaf:isPrimaryTopicOf
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software