About: Regular prime     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Number113582013, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FRegular_prime

In number theory, a regular prime is a special kind of prime number, defined by Ernst Kummer in 1850 to prove certain cases of Fermat's Last Theorem. Regular primes may be defined via the divisibility of either class numbers or of Bernoulli numbers. The first few regular odd primes are: 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 43, 47, 53, 61, 71, 73, 79, 83, 89, 97, 107, 109, 113, 127, 137, 139, 151, 163, 167, 173, 179, 181, 191, 193, 197, 199, ... (sequence in the OEIS).

AttributesValues
rdf:type
rdfs:label
  • عدد أولي نظامي
  • Nombres primers regulars
  • Reguläre Primzahl
  • Regular prime
  • Primo regular
  • Nombre premier régulier
  • 正則素数
  • Regulier priemgetal
  • Regularne liczby pierwsze
  • Регулярное простое число
rdfs:comment
  • عدد أولي نظامي هو عدد أولي p أكبر قطعا من الاثنين والذي لا يقسم...
  • In der Zahlentheorie heißt eine Primzahl regulär, wenn sie bestimmte Zahlen nicht teilt. Ihre bekannteste Anwendung stammt von Ernst Kummer, der 1850 bewies, dass der große Fermatsche Satz für Exponenten gilt, die durch eine reguläre Primzahl teilbar sind.
  • In number theory, a regular prime is a special kind of prime number, defined by Ernst Kummer in 1850 to prove certain cases of Fermat's Last Theorem. Regular primes may be defined via the divisibility of either class numbers or of Bernoulli numbers. The first few regular odd primes are: 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 43, 47, 53, 61, 71, 73, 79, 83, 89, 97, 107, 109, 113, 127, 137, 139, 151, 163, 167, 173, 179, 181, 191, 193, 197, 199, ... (sequence in the OEIS).
  • En mathématiques, un nombre premier p > 2 est dit régulier si une certaine propriété liée aux racines du polynôme Xp – 1 est vérifiée. Cette notion a été introduite par Ernst Kummer en 1847, en vue de démontrer le « dernier théorème de Fermat », dans un article intitulé « Beweis des Fermat'schen Satzes der Unmöglichkeit von xλ+yλ = zλ für eine unendliche Anzahl Primzahlen λ ».
  • 数論における正則素数(せいそくそすう、regular prime)とは、円の p 分体の類数を割り切らない素数 p のことであり、エルンスト・クンマーにより考案された。小さいものから順に 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, …(オンライン整数列大辞典の数列 A7703) と続く。クンマーは、奇素数の正則性は p が k = 2, 4, 6, …, p − 3 におけるベルヌーイ数の分子を割り切らないことと等価であることを示した。また、次数が正則素数である場合にフェルマーの最終定理が正しいことを証明した。 正則素数は無限に存在すると予想されている。より正確には、e−1/2 、つまり約 61% の素数が正則であると予想されている (Siegel, 1964)。どちらの予想も、2009 年現在まだ証明されていない。 正則でない奇素数は非正則素数と呼ばれ、小さいものから順に 37, 59, 67, 101, 103, 131, 149, 157, 233, 257, 263, … (A928) と続く。分子が p で割り切れるようなベルヌーイ数 Bk の個数は p の非正則指数と呼ばれる。K. L. ジェンセンは、1915年、非正則素数が無限に存在することを示した。
  • Regularne liczby pierwsze – w teorii liczb jest to klasa liczb pierwszych wprowadzona przez niemieckiego matematyka Ernsta Kummera.
  • В теории чисел регулярное простое число — всякое простое число р, для которого число классов идеалов кругового поля не делится на р. Все остальные простые нечётные числа называются иррегулярными. Несколько первых регулярных простых чисел: 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, …
  • En matemàtiques, un nombre primer regular és un nombre primer que verifica certa propietar relacionada amb les arrels del polinomi xp-1. Aquesta noció va ser introduïda per Ernst Kummer el 1847, per a una prova de l'últim teorema de Fermat, en un article titulat Beweis des Fermat'schen Satzes der Unmöglichkeit von xl+yl=zl für eine unendliche Anzahl Primzahlen l'. Els nombres primers irregulars més petits són 37, 59, 67, 101. Se sap que existeixi una infinitat de nombres primers irregulars, però l'existència d'una infinitat de nombres primers regulars continua sent una qüestió oberta.
  • En matemáticas, un primo regular es un cierto tipo de número primo. Un número primo p es regular si no divide el del p-iésimo campo ciclotómico (o sea, el campo de los números algebraicos obtenido al adjuntar la p-iesima raíz de la unidad a los números racionales). Los primeros primos regulares son: 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, … Un criterio equivalente de regularidad es que p no sea divisor del numerador de ningún número de Bernoulli Bk para k = 2, 4, 6, …, p − 3. 37, 59, 67, 101, 103, 131, 149, …
  • In de getaltheorie is een regulier priemgetal een priemgetal dat het klassegetal van het -de cyclotomische veld/lichaam niet deelt.Met het -de cyclotomische veld wordt het algebraïsch getallenlichaam bedoeld dat wordt verkregen door aan de rationale getallen de -eenheidswortel toe te voegen. Ernst Kummer toonde aan dat een equivalent criterium voor regulariteit is dat geen deler is van de teller van enige van de Bernoulligetallen voor De eerste reguliere priemgetallen zijn: 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, …. 37, 59, 67, 101, 103, 131, 149, ….
differentFrom
foaf:isPrimaryTopicOf
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3321 as of Jun 2 2021, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software