About: Raised cosine distribution     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Distribution105729036, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FRaised_cosine_distribution

In probability theory and statistics, the raised cosine distribution is a continuous probability distribution supported on the interval . The probability density function (PDF) is for and zero otherwise. The cumulative distribution function (CDF) is for and zero for and unity for . where is a generalized hypergeometric function.

AttributesValues
rdf:type
rdfs:label
  • Raised cosine distribution
  • Loi du cosinus surélevé
rdfs:comment
  • En théorie des probabilités et en statistique, la loi du cosinus surélevé est une loi de probabilité continue définie à partir de la fonction cosinus. Elle dépend de deux paramètres : un réel μ qui est la moyenne et un paramètre positif s décrivant la variance. Lorsque μ = 0 et s =1, la loi est appelée loi du cosinus surélevé standard.
  • In probability theory and statistics, the raised cosine distribution is a continuous probability distribution supported on the interval . The probability density function (PDF) is for and zero otherwise. The cumulative distribution function (CDF) is for and zero for and unity for . where is a generalized hypergeometric function.
name
  • Raised cosine
foaf:depiction
  • External Image
foaf:isPrimaryTopicOf
thumbnail
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
type
  • density
cdf image
parameters
pdf image
has abstract
  • In probability theory and statistics, the raised cosine distribution is a continuous probability distribution supported on the interval . The probability density function (PDF) is for and zero otherwise. The cumulative distribution function (CDF) is for and zero for and unity for . The moments of the raised cosine distribution are somewhat complicated in the general case, but are considerably simplified for the standard raised cosine distribution. The standard raised cosine distribution is just the raised cosine distribution with and . Because the standard raised cosine distribution is an even function, the odd moments are zero. The even moments are given by: where is a generalized hypergeometric function.
  • En théorie des probabilités et en statistique, la loi du cosinus surélevé est une loi de probabilité continue définie à partir de la fonction cosinus. Elle dépend de deux paramètres : un réel μ qui est la moyenne et un paramètre positif s décrivant la variance. Lorsque μ = 0 et s =1, la loi est appelée loi du cosinus surélevé standard.
prov:wasDerivedFrom
page length (characters) of wiki page
is foaf:primaryTopic of
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software