About: Quantum phases     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : dbo:PopulatedPlace, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FQuantum_phases

Quantum phases are quantum states of matter at zero temperature. Even at zero temperature a quantum-mechanical system has quantum fluctuations and therefore can still support phase transitions. As a physical parameter is varied, quantum fluctuations can drive a phase transition into a different phase of matter. An example of a canonical quantum phase transition is the well-studied Superconductor Insulator Transition in disordered thin films which separates two quantum phases having different symmetries. Quantum magnets provide another example of QPT. The discovery of new quantum phases is a pursuit of many scientists. These phases of matter exhibit properties and symmetries which can potentially be exploited for technological purposes and the benefit of mankind.

AttributesValues
rdf:type
rdfs:label
  • Quantum phases (en)
rdfs:comment
  • Quantum phases are quantum states of matter at zero temperature. Even at zero temperature a quantum-mechanical system has quantum fluctuations and therefore can still support phase transitions. As a physical parameter is varied, quantum fluctuations can drive a phase transition into a different phase of matter. An example of a canonical quantum phase transition is the well-studied Superconductor Insulator Transition in disordered thin films which separates two quantum phases having different symmetries. Quantum magnets provide another example of QPT. The discovery of new quantum phases is a pursuit of many scientists. These phases of matter exhibit properties and symmetries which can potentially be exploited for technological purposes and the benefit of mankind. (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • Quantum phases are quantum states of matter at zero temperature. Even at zero temperature a quantum-mechanical system has quantum fluctuations and therefore can still support phase transitions. As a physical parameter is varied, quantum fluctuations can drive a phase transition into a different phase of matter. An example of a canonical quantum phase transition is the well-studied Superconductor Insulator Transition in disordered thin films which separates two quantum phases having different symmetries. Quantum magnets provide another example of QPT. The discovery of new quantum phases is a pursuit of many scientists. These phases of matter exhibit properties and symmetries which can potentially be exploited for technological purposes and the benefit of mankind. The difference between these states and classical states of matter is that classically, materials exhibit different phases which ultimately depends on the change in temperature and/or density or some other macroscopic property of the material whereas quantum phases can change in response to a change in a different type of order parameter (which is instead a parameter in the Hamiltonian of the system, unlike the classical case) of the system at zero temperature – temperature does not have to change. The order parameter plays a role in quantum phases analogous to its role in classical phases. Some quantum phases are the result of a superposition of many other quantum phases. (en)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 60 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software