About: Pythagorean theorem     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Message106598915, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FPythagorean_theorem

In mathematics, the Pythagorean theorem, also known as Pythagoras' theorem, is a fundamental relation in Euclidean geometry among the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides. This theorem can be written as an equation relating the lengths of the sides a, b and c, often called the "Pythagorean equation":

AttributesValues
rdf:type
rdfs:label
  • Pythagorean theorem
  • نظرية فيثاغورس
  • Teorema de Pitàgores
  • Pythagorova věta
  • Satz des Pythagoras
  • Πυθαγόρειο θεώρημα
  • Teoremo de Pitagoro
  • Teorema de Pitágoras
  • Pitagorasen teorema
  • Théorème de Pythagore
  • Teoirim Phíotagarásach
  • Teorema Pythagoras
  • Teorema di Pitagora
  • ピタゴラスの定理
  • 피타고라스 정리
  • Twierdzenie Pitagorasa
  • Stelling van Pythagoras
  • Teorema de Pitágoras
  • Теорема Пифагора
  • Pythagoras sats
  • Теорема Піфагора
  • 勾股定理
rdfs:comment
  • في الرياضيات، مبرهنة فيثاغورس وتُعرف شهرة باسم نظرية فيثاغورس هي علاقة أساسية في الهندسة الإقليدية بين أضلاع المثلث قائم الزّاوية. تنص على أن مجموع مربعي طولي ضلعي الزاوية القائمة مساوٍ لمربع طول الوتر. يُمكن كتابة النّظرية كمعادلة تربط بين أطوال أضلاع المثلث ا ب جـ. سميت هذه المبرهنة هكذا نسبةً إلى العالم فيثاغورس الذي كان رياضياً وفيلسوفاً وعالم فلك في اليونان القديمة.
  • Pythagorova věta popisuje vztah, který platí mezi délkami stran pravoúhlých trojúhelníků v euklidovské rovině. Umožňuje dopočítat délku třetí strany takového trojúhelníka, pokud jsou známy délky dvou zbývajících stran. Věta zní: Obsah čtverce sestrojeného nad přeponou libovolného pravoúhlého trojúhelníku je roven součtu obsahů čtverců nad oběma jeho odvěsnami (dvěma kratšími stranami). Formálně Pythagorovu větu vyjadřuje rovnice kde označuje délku přepony pravoúhlého trojúhelníka a délky odvěsen jsou označeny a .
  • Pitagorasen teoremak zera ezartzen du, edozein triangelu angeluzuzenetan, hipotenusaren luzeraren karratua bi katetoen luzeren karratuen berdina dela. Demagun triangelu angeluzuzen bat dugula, non a eta b deituriko katetoak ditugun, eta hipotenusaren neurria c izanik, honakoa erlazioa betetzen da: Ekuazio honetatik, egiaztapen aljebraiko eta aplikazio praktikodun hiru ondorio deduzitzen dira:
  • El teorema de Pitágoras establece que, en todo triángulo rectángulo, la longitud de la hipotenusa es igual a la raíz cuadrada de la suma del área de los cuadrados de las respectivas longitudes de los catetos. Es la proposición más conocida entre las que tienen nombre propio en la matemática. Si en un triángulo rectángulo hay catetos de longitud y , y la medida de la hipotenusa es , entonces se cumple la siguiente relación: () De esta ecuación se deducen tres corolarios de verificación algebraica y aplicación práctica:
  • Is éard is teoirim Phíotagarásach ná teoirim a luann go bhfuil triantáin dronuilleach (an slíos os comhair an dronuillin) cearnaithe cothrom leis an dá shlíos eile cearnaithe. Scríobhtar an teoirim mar chothromóid leis na litreacha a, b agus c mar seo: nuair a sheasann c an taobhagán agus a sheasann b agus c an dá shlíos eile. Ní fios go cinnte go raibh an hipiteis ann roimh Píotágarás ach tugadh a ainm ar an teoirim mar b'e an cheád duine a chruthaigh an teoirim.
  • Dalam matematika, teorema Pythagoras adalah suatu keterkaitan dalam geometri Euklides antara tiga sisi sebuah segitiga siku-siku. Teorema ini dinamakan menurut nama filsuf Yunani abad ke-6 SM, Pythagoras.
  • Il teorema di Pitagora è un teorema della geometria euclidea che stabilisce una relazione fondamentale tra i lati di un triangolo rettangolo. Si può considerare un caso speciale, per i triangoli rettangoli, del teorema del coseno.
  • De stelling van Pythagoras is een wiskundige stelling die haar naam dankt aan de Griekse wiskundige Pythagoras. 'Zijn' stelling was overigens alleen maar nieuw voor de Grieken. In Soemer was het resultaat al veel langer bekend en ook in Babylonië en het oude Egypte werd ze al eerder toegepast. In het bijzonder werd de verhouding al vroeg gebruikt om rechte hoeken uit te meten, zoals dat tot op de dag van vandaag door sommigen nog wordt gedaan. Naast kennis van de stelling om haar toe te kunnen passen, is ook het leveren van een bewijs belangrijk. Wat dat betreft waren de Grieken (Pythagoras of een van zijn leerlingen) wel de eersten. Zij wisten niet alleen dat de stelling waar was, maar konden ook in algemene termen (abstracties) aantonen waarom zij waar was.
  • 기하학에서, 피타고라스 정리(문화어: 세평방의정리, 영어: Pythagorean theorem)는 직각 삼각형의 빗변의 제곱이 두 직각변의 제곱의 합과 같다는 정리이다.
  • Twierdzenie Pitagorasa – twierdzenie geometrii euklidesowej dotyczące trójkątów prostokątnych, równoważne w istocie jest piątemu pewnikowi Euklidesa o prostych równoległych. W zachodnioeuropejskim kręgu kulturowym przypisuje się je żyjącemu w VI wieku p.n.e. greckiemu matematykowi i filozofowi Pitagorasowi, jednak odkrycia dokonali Babilończycy, którzy znali dodatkowo dwie prostsze metody, przy których błąd jest niewielki. Zapewne znali je przed Pitagorasem starożytni Egipcjanie. Wiadomo[potrzebny przypis] też, że jeszcze przed nim znano je w starożytnych Chinach i Indiach.
  • 勾股定理,又稱畢達哥拉斯定理(Pythagoras theorem)、商高定理、新娘座椅定理、百牛定理,是平面几何中一个基本而重要的定理。勾股定理说明,平面上的直角三角形的两条直角边的长度(古称勾长、股长)的平方和等于斜边长(古称弦长)的平方。反之,若平面上三角形中两边长的平方和等于第三边边长的平方,则它是直角三角形(直角所对的边是第三边)。勾股定理是人类早期发现并证明的重要数学定理之一。 《周髀算經》记述公元前一千多年,商高以這組勾股數为例解释了勾股定理要素,论证「弦长平方必定是两直角边的平方和」,确立了直角三角形两条直角边的平方和等于斜边平方的判定原则。其判定方法因后世不明其法而被忽略。 古埃及在公元前2600年的纸莎草記載有这一组勾股数,而古巴比伦泥板紀錄的最大的一个勾股数组是。 有些參考資料提到法国和比利時將勾股定理称为驴桥定理,但驴桥定理是指等腰三角形的二底角相等,非勾股定理。 畢氏定理有四百多個證明,如微分證明,面積證明等。
  • Теоре́ма Піфаго́ра — одна із засадничих теорем евклідової геометрії, котра встановлює співвідношення між сторонами прямокутного трикутника. Вважається, що вона доведена грецьким математиком Піфагором, на честь котрого вона названа (є й інші версії, зокрема думка, що ця теорема в загальному вигляді була сформульована математиком-піфагорійцем Гіппасом).
  • El teorema de Pitàgores, en el seu enunciat habitual, estableix que en un triangle rectangle la suma dels quadrats dels catets (els costats que formen l'angle recte) és igual al quadrat de la hipotenusa (l'altre costat). El recíproc també es compleix, és a dir: en un triangle, si la suma dels quadrats de les longituds dels costats més curts és igual al quadrat de la longitud del costat més llarg, llavors l'angle comprès entre els dos costats més curts és un angle recte. on c representa la longitud de la hipotenusa, i a i b representen les longituds dels altres dos costats.
  • Der Satz des Pythagoras ist einer der fundamentalen Sätze der euklidischen Geometrie. Er besagt, dass in allen ebenen rechtwinkligen Dreiecken die Summe der Flächeninhalte der Kathetenquadrate gleich dem Flächeninhalt des Hypotenusenquadrates ist. Sind und die Längen der am rechten Winkel anliegenden Seiten, der Katheten, und die Länge der dem rechten Winkel gegenüberliegenden Seite, der Hypotenuse, dann lautet der Satz als Gleichung ausgedrückt:
  • Το Πυθαγόρειο θεώρημα ή θεώρημα του Πυθαγόρα στα μαθηματικά, είναι σχέση της ευκλείδειας γεωμετρίας ανάμεσα στις πλευρές ενός ορθογώνιου τριγώνου. Συνεπώς αποτελεί θεώρημα της επίπεδης γεωμετρίας. Σύμφωνα με το Πυθαγόρειο Θεώρημα, που εξ ονόματος αποδίδεται στον αρχαίο Έλληνα φιλόσοφο Πυθαγόρα: «ἐν τοῖς ὀρθογωνίοις τριγώνοις τὸ ἀπὸ τῆς τὴν ὀρθὴν γωνίαν ὑποτεινούσης πλευρᾶς τετράγωνον ἴσον ἐστὶ τοῖς ἀπὸ τῶν τὴν ὀρθὴν γωνίαν περιεχουσῶν πλευρῶν τετραγώνοις.». Δηλαδή: «το τετράγωνο της υποτινούσης (της πλευράς που βρίσκεται απέναντι από την ορθή γωνία) ενός ορθογώνιου τριγώνου ισούται με το άθροισμα των τετραγώνων των δύο καθέτων πλευρών».
  • En matematiko, la Teoremo de Pitagoro estas la rilato inter la tri lateroj de orta triangulo. La teoremo estas nomita tiel laŭ la nomo de la antikva Greka matematikisto Pitagoro, unu el pluraj antikvuloj kiuj malkovris ĝin. La teoremo estas kiel sube: Se c estas la longo de la hipotenuzo kaj ankaŭ a kaj b estas la longoj de la du aliaj lateroj (tio estas, la katetoj), la teoremo povas esti skribita kiel sube: Tiele ĝi povas esti esprimita kiel ekvacio nome Pitagora Ekvacio.
  • Le théorème de Pythagore est un théorème de géométrie euclidienne qui met en relation les longueurs des côtés dans un triangle rectangle : le carré de la longueur de l’hypoténuse, qui est le côté opposé à l'angle droit, est égal à la somme des carrés des longueurs des deux autres côtés. Les premières démonstrations historiques reposent en général sur des méthodes de calcul d’aire par découpage et déplacement de figures géométriques. Inversement, la conception moderne de la géométrie euclidienne est fondée sur une notion de distance qui est définie pour respecter ce théorème.
  • In mathematics, the Pythagorean theorem, also known as Pythagoras' theorem, is a fundamental relation in Euclidean geometry among the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides. This theorem can be written as an equation relating the lengths of the sides a, b and c, often called the "Pythagorean equation":
  • 初等幾何学におけるピタゴラスの定理(ピタゴラスのていり、英: Pythagorean theorem)は、直角三角形の3辺の長さの関係を表す。斜辺の長さを c, 他の2辺の長さを a, b とすると、定理は が成り立つという等式の形で述べられる。三平方の定理(さんへいほうのていり)、勾股弦の定理(こうこげんのていり)とも呼ばれる。 ピタゴラスの定理によって、直角三角形をなす3辺の内、2辺の長さを知ることができれば、残りの1辺の長さを知ることができる。例えば、直交座標系において原点と任意の点を結ぶ線分の長さは、ピタゴラスの定理に従って、その点の座標成分を2乗したものの総和の平方根として表すことができる。このことは2次元の座標系に限らず、3次元の系やより大きな次元の系についても成り立つ。この事実から、ピタゴラスの定理を用いて任意の2点の間の距離を測ることができる。このようにして導入される距離はユークリッド距離と呼ばれる。 「ピタゴラスが直角二等辺三角形のタイルが敷き詰められた床を見ていて、この定理を思いついた」など幾つかの逸話が知られているものの、この定理はピタゴラスが発見したかどうかは分からない。バビロニア数学のプリンプトン322や古代エジプトなどでもピタゴラス数については知られていたが、彼らが定理を発見していたかどうかは定かではない。
  • O teorema de Pitágoras é uma relação matemática entre os comprimentos dos lados de qualquer triângulo retângulo. Na geometria euclidiana, o teorema afirma que: Num triângulo rectângulo, conhecendo o comprimento da hipotenusa e de um cateto, o Teorema de Pitágoras permite calcular o comprimento do outro cateto. Antes de usar o Teorema de Pitágoras, deve confirmar-se que o triângulo é rectângulo . Para ambos os enunciados, pode-se equacionar onde c representa o comprimento da hipotenusa, e a e b representam os comprimentos dos outros dois lados.
  • Теоре́ма Пифаго́ра — одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника: сумма квадратов длин катетов равна квадрату длины гипотенузы. Соотношение в том или ином виде предположительно было известно различным древним цивилизациям задолго до нашей эры; первое геометрическое доказательство приписывается Пифагору.Утверждение появляется как Предложение 47 в «Началах» Евклида.
  • Pythagoras sats är en av matematikens mest kända satser. Enligt Pythagoras sats så gäller för en rätvinklig triangels sidor att Kvadraten på hypotenusan är lika med summan av kvadraterna på kateterna. Hypotenusan är den längsta sidan i en rätvinklig triangel och är motstående sida till den räta vinkeln. Katet är benämningen på var och en av de två sidor vilka bildar den räta vinkeln. Sambandet i Pythagoras sats kan skrivas som Pythagoras ekvation: där a, b och c är sidornas längder för en rätvinklig triangel och c är hypotenusans längd.
rdfs:seeAlso
foaf:depiction
  • External Image
foaf:isPrimaryTopicOf
thumbnail
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software