About: Pseudo-Riemannian manifold     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Manifold103717750, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FPseudo-Riemannian_manifold

In differential geometry, a pseudo-Riemannian manifold, also called a semi-Riemannian manifold, is a differentiable manifold with a metric tensor that is everywhere nondegenerate. This is a generalization of a Riemannian manifold in which the requirement of positive-definiteness is relaxed. Every tangent space of a pseudo-Riemannian manifold is a pseudo-Euclidean vector space. A special case used in general relativity is a four-dimensional Lorentzian manifold for modeling spacetime, where tangent vectors can be classified as timelike, null, and spacelike.

AttributesValues
rdf:type
rdfs:label
  • Varietat pseudoriemanniana
  • Pseudo-riemannsche Mannigfaltigkeit
  • Variedad pseudoriemanniana
  • Pseudo-Riemannian manifold
  • Variété pseudo-riemannienne
  • Varietà pseudo-riemanniana
  • 擬リーマン多様体
  • 준 리만 다양체
  • Rozmaitość pseudoriemannowska
  • Pseudo-riemann-variëteit
  • Variedade pseudorriemanniana
  • Псевдориманово многообразие
  • Pseudo-Riemannsk mångfald
  • Псевдоріманів многовид
  • 伪黎曼流形
rdfs:comment
  • In differential geometry, a pseudo-Riemannian manifold, also called a semi-Riemannian manifold, is a differentiable manifold with a metric tensor that is everywhere nondegenerate. This is a generalization of a Riemannian manifold in which the requirement of positive-definiteness is relaxed. Every tangent space of a pseudo-Riemannian manifold is a pseudo-Euclidean vector space. A special case used in general relativity is a four-dimensional Lorentzian manifold for modeling spacetime, where tangent vectors can be classified as timelike, null, and spacelike.
  • Eine pseudo-riemannsche Mannigfaltigkeit oder semi-riemannsche Mannigfaltigkeit ist ein mathematisches Objekt aus der (pseudo-)riemannschen Geometrie. Sie ist eine Verallgemeinerung der schon früher definierten riemannschen Mannigfaltigkeit und wurde von Albert Einstein für seine allgemeine Relativitätstheorie eingeführt. Jedoch wurde das Objekt nach Bernhard Riemann, dem Begründer der Riemannschen Geometrie, benannt. Aber auch nach Albert Einstein wurde eine Struktur einer Mannigfaltigkeit benannt. Diese einsteinschen Mannigfaltigkeiten sind ein Spezialfall der pseudo-riemannschen.
  • La géométrie pseudo-riemannienne est une extension de la géométrie riemannienne ; au même titre que, en algèbre bilinéaire, l'étude des formes bilinéaires symétriques généralisent les considérations sur les métriques euclidiennes. Cependant, cette géométrie présente des aspects non intuitifs des plus surprenants.
  • 微分幾何学において、擬リーマン多様体 (pseudo-Riemannian manifold)(また、半リーマン多様体 (semi-Riemannian manifold) ともいう)は、リーマン多様体の一般化であり、そこでは計量テンソルが必ずしもでないこともある。代わって、非退化というより弱い条件が、計量テンソルへ導入される。 一般相対論で極めて重要な多様体として、ローレンツ多様体 (Lorentzian manifold) があり、そこでは、一つの次元が他の次元とは反対の符号を持っている。このことは、接ベクトルが時間的、光的、空間的へと分類される。時空は 4次元ローレンツ多様体としてモデル化される。
  • In geometria differenziale, una varietà pseudo-riemanniana è una varietà differenziabile dotata di un tensore metrico non degenere. Questa nozione generalizza quella di varietà riemanniana ed è utile nella formulazione della relatività generale. Una varietà lorentziana è una varietà pseudo-riemanniana il cui tensore metrico ha segnatura . La relatività generale modellizza lo spaziotempo come una varietà lorentziana con segnatura .
  • 미분기하학에서, 준 리만 다양체(영어: pseudo/semi-Riemannian manifold)는 양의 정부호가 아닐 수 있는 계량 텐서가 주어진 매끄러운 다양체이며, 리만 다양체의 일반화이다.
  • In de differentiaalmeetkunde is een pseudo-riemann-variëteit (ook wel een semi-riemann-variëteit genoemd) een veralgemening van een riemann-variëteit. Het is een van de vele wiskundige objecten die vernoemd zijn naar de Duitse wiskundige Bernhard Riemann. Het belangrijkste verschil tussen een riemann-variëteit en een pseudo-riemann-variëteit is dat op een pseudo-riemann-variëteit de metrische tensor niet positief-definiet hoeft te zijn. In plaats daarvan wordt de zwakkere conditie van niet-ontaard zijn opgelegd.
  • En pseudo-Riemannsk mångfald, pseudo-Riemannmångfald, semi-Riemannsk mångfald är en generalisering av en Riemannmångfald, där avstånd inte nödvändigtvis är positiva. Den absolut mest välkända tillämpningen av pseudo-Riemannska mångfalder är den allmänna relativitetsteorins beskrivning av universum som en fyrdimensionell rumtid, som ges en pseudo-Riemannsk struktur där ljus rör sig längs kurvor som alltid har längd 0.
  • Псе́вдори́маново многообра́зие — многообразие, в котором задан метрический тензор (квадратичная форма), невырожденный в каждой точке, но не обязательно положительно определённый. Обычно предполагается, что сигнатура метрики постоянна (в случае связного многообразия это автоматически следует из условия невырожденности).
  • Псевдорімановий многовид — многовид, в якому визначений метричний тензор (квадратична форма), що є невиродженим в кожній точці, але, на відміну від випадку ріманових многовидів, не обов'язково додатноозначеним. Зазвичай передбачається, що метрики постійна (у разі зв'язаного многовида це автоматично випливає з умови невиродженості).
  • 在微分几何中,伪黎曼流形(英語:Pseudo-Riemannian manifold),也称为半黎曼流形,是一光滑流形,其上有一光滑、对称、点点非退化的 張量。此張量稱為伪黎曼度量或伪度量張量。 伪黎曼流形与黎曼流形的区别是它不需要正定(通常要求非退化)。因为每個正定形式都是非退化的,所以黎曼度量也是一个伪黎曼度量,亦即黎曼流形是伪黎曼流形的一种特例。 每一個非退化對稱,雙線性形式有一個固定的。這裡與記作正特徵值及負特徵值的个数。注意是流形的维数。黎曼流形就是以作為符号。 伪黎曼流形的符号稱為洛伦兹度量。擁有洛伦兹度量的流形都是洛伦兹流形。除黎曼流形外,洛伦兹流形是伪黎曼流形的最重要的子類。因為它常被用於廣義相對論。廣義相對論首要假設是時空可以轉為擁有符号的洛伦兹流形的模型。 和欧几里得空间可以被认为是黎曼流形的模型一样,,有平坦闵可夫斯基度量的闵可夫斯基空间(Minkowski space) 是洛伦兹流形的模型空间。特征数为的伪黎曼流形的模型空间是有如下伪度量的: 有些黎曼度量的基本定理可以推广到伪黎曼的情形。例如对伪黎曼流形也成立。这使得我们能够在伪黎曼流形上能够使用列维-奇维塔联络和相关的曲率张量。另一方面,黎曼几何的很多定理在推广到伪黎曼的情况下不成立。例如,并不是每个光滑流形都可以有一个给定符号的伪黎曼度量;因为有一些特殊的拓扑阻碍存在。
  • A geometria diferencial, una varietat pseudoriemanniana és una varietat diferenciable equipada amb un tensor mètric (0,2)-diferenciable, simètric, que és en cada punt de la varietat. Aquest tensor es diu un tensor mètric pseudoriemanniano ia diferència d'un tensor mètric riemanniana no ha de ser definit positiu. De fet la varietats pseudoriemannianas generalitzen el concepte de varietat riemannana
  • En geometría diferencial, una variedad pseudoriemanniana es una variedad diferenciable equipada con un tensor métrico (0,2)-diferenciable, simétrico, que es no degenerado en cada punto de la variedad. Este tensor se llama un tensor métrico pseudoriemanniano y a diferencia de un tensor métrico riemanniano no tiene por qué ser definido positivo. De hecho la variedades pseudoriemannianas generalizan el concepto de variedad riemannana.
  • Rozmaitość pseudoriemannowska (przestrzeń pseudoriemannowska) – uogólnienie rozmaitości riemannowskiej: tensor metryczny może tu być zarówno określony dodatnio, jak i nieokreślony, przy czym element liniowy poprzez odpowiedni wybór współrzędnych krzywoliniowych można sprowadzić – przynajmniej lokalnie, tj. w otoczeniu każdego punktu – do postaci diagonalnej gdzie: – współrzędne tensora metrycznego w otoczeniu punktu – współrzędne wektora łączącego dany punkt z infinitezymalnie blisko położonym innym punktem przestrzeni. Tensor metryczny przestrzeni pseudoriemannowskiej ma więc sygnaturę
  • Em geometria diferencial, uma variedade pseudorriemanniana é uma variedade diferenciável equipada com um tensor métrico (0,2)-diferenciável, simétrico, que é em cada ponto da variedade. Este tensor se chama um tensor métrico pseudorriemanniano, e generaliza o ao não obrigar o tensor a ser positivo definido. As variedades pseudorriemannianas generalizam o conceito de variedade riemanniana
foaf:isPrimaryTopicOf
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3321 as of Jun 2 2021, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software