About: Preconditioned Crank–Nicolson algorithm     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FPreconditioned_Crank%E2%80%93Nicolson_algorithm

In computational statistics, the preconditioned Crank–Nicolson algorithm (pCN) is a Markov chain Monte Carlo (MCMC) method for obtaining random samples – sequences of random observations – from a target probability distribution for which direct sampling is difficult. The algorithm as named was highlighted in 2013 by Cotter, Roberts, Stuart and White, and its ergodicity properties were proved a year later by Hairer, Stuart and Vollmer. In the specific context of sampling diffusion bridges, the method was introduced in 2008.

AttributesValues
rdf:type
rdfs:label
  • Preconditioned Crank–Nicolson algorithm (en)
rdfs:comment
  • In computational statistics, the preconditioned Crank–Nicolson algorithm (pCN) is a Markov chain Monte Carlo (MCMC) method for obtaining random samples – sequences of random observations – from a target probability distribution for which direct sampling is difficult. The algorithm as named was highlighted in 2013 by Cotter, Roberts, Stuart and White, and its ergodicity properties were proved a year later by Hairer, Stuart and Vollmer. In the specific context of sampling diffusion bridges, the method was introduced in 2008. (en)
rdfs:seeAlso
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In computational statistics, the preconditioned Crank–Nicolson algorithm (pCN) is a Markov chain Monte Carlo (MCMC) method for obtaining random samples – sequences of random observations – from a target probability distribution for which direct sampling is difficult. The most significant feature of the pCN algorithm is its dimension robustness, which makes it well-suited for high-dimensional sampling problems. The pCN algorithm is well-defined, with non-degenerate acceptance probability, even for target distributions on infinite-dimensional Hilbert spaces. As a consequence, when pCN is implemented on a real-world computer in large but finite dimension N, i.e. on an N-dimensional subspace of the original Hilbert space, the convergence properties (such as ergodicity) of the algorithm are independent of N. This is in strong contrast to schemes such as Gaussian random walk Metropolis–Hastings and the Metropolis-adjusted Langevin algorithm, whose acceptance probability degenerates to zero as N tends to infinity. The algorithm as named was highlighted in 2013 by Cotter, Roberts, Stuart and White, and its ergodicity properties were proved a year later by Hairer, Stuart and Vollmer. In the specific context of sampling diffusion bridges, the method was introduced in 2008. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (62 GB total memory, 54 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software