About: Orthocentroidal circle     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FOrthocentroidal_circle

In geometry, the orthocentroidal circle of a non-equilateral triangle is the circle that has the triangle's orthocenter and its centroid at opposite ends of a diameter. This diameter also contains the triangle's nine-point center and is a subset of the Euler line, which also contains the circumcenter outside the orthocentroidal circle. The square of the diameter of the orthocentroidal circle is where a, b, and c are the triangle's side lengths and D is the diameter of its circumcircle.

AttributesValues
rdfs:label
  • Orthocentroidal circle
  • Círculo ortocentroidal
  • Ортоцентроидная окружность
rdfs:comment
  • En geometría, el círculo ortocentroidal de un triángulo no equilátero es el círculo cuyo contorno pasa por el ortocentro del triángulo y por su centroide, situados en los extremos opuestos de un diámetro. Este diámetro también contiene el centro de nueve puntos del triángulo y pertenece a la recta de Euler, que también contiene el circuncentro, situado fuera del círculo ortocentroidal. El cuadrado del diámetro del círculo ortocentroidal es​ donde a, b y c son las longitudes de los lados del triángulo y D es el diámetro de su circunferencia circunscrita.
  • In geometry, the orthocentroidal circle of a non-equilateral triangle is the circle that has the triangle's orthocenter and its centroid at opposite ends of a diameter. This diameter also contains the triangle's nine-point center and is a subset of the Euler line, which also contains the circumcenter outside the orthocentroidal circle. The square of the diameter of the orthocentroidal circle is where a, b, and c are the triangle's side lengths and D is the diameter of its circumcircle.
  • Ортоцентроидная окружность неравностороннего треугольника — это окружность, построенная на отрезке, соединяющем его ортоцентр и центроид, как на диаметре. Этот диаметр также содержит центр описанной окружности и центр окружности девяти точек треугольника и является частью прямой Эйлера. Гвинанд (Guinand) в 1984 г. показал, что инцентр треугольника должен лежать внутри ортоцентроидной окружности, но не совпадать с центром девяти точек; то есть он должен попадать в открытый ортоцентроидный диск с вырезанным внутри центром девяти точек.
foaf:depiction
  • External Image
foaf:isPrimaryTopicOf
thumbnail
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • En geometría, el círculo ortocentroidal de un triángulo no equilátero es el círculo cuyo contorno pasa por el ortocentro del triángulo y por su centroide, situados en los extremos opuestos de un diámetro. Este diámetro también contiene el centro de nueve puntos del triángulo y pertenece a la recta de Euler, que también contiene el circuncentro, situado fuera del círculo ortocentroidal. Guinand demostró en 1984 que el incentro del triángulo debe estar en el interior del círculo ortocentroidal, pero no coincidiendo con el centro de nueve puntos; es decir, debe caer en el "disco ortocentroidal" abierto perforado en el centro de nueve puntos.​​​​​El incentro puede ser cualquier punto del disco, dependiendo del triángulo específico que tenga ese círculo ortocentroidal particular.​ Además,​ el punto de Fermat, el punto de Gergonne y el centro simediano están en el disco ortocentroidal abierto perforado en su propio centro (y podrían estar en cualquier punto), mientras que el segundo punto de Fermat está en el exterior del círculo ortocentroidal (y también podría estar en cualquier punto). El conjunto de localizaciones potenciales de uno u otro de los puntos de Brocard también es el disco ortocentroidal abierto.​ El cuadrado del diámetro del círculo ortocentroidal es​ donde a, b y c son las longitudes de los lados del triángulo y D es el diámetro de su circunferencia circunscrita.
  • Ортоцентроидная окружность неравностороннего треугольника — это окружность, построенная на отрезке, соединяющем его ортоцентр и центроид, как на диаметре. Этот диаметр также содержит центр описанной окружности и центр окружности девяти точек треугольника и является частью прямой Эйлера. Гвинанд (Guinand) в 1984 г. показал, что инцентр треугольника должен лежать внутри ортоцентроидной окружности, но не совпадать с центром девяти точек; то есть он должен попадать в открытый ортоцентроидный диск с вырезанным внутри центром девяти точек. Более того, точка Ферма, точка Жергонна и точка Лемуана лежат в открытом ортоцентроидном диске с вырезанным внутри своим собственным центром (и могут быть в любой точке внутри него), тогда как находится снаружи ортоцентроидного круга (и также может быть в любой точке снаружи). Возможные положения первой и второй точек Брокара также находятся в открытом ортоцентроидном диске. Квадрат диаметра ортоцентроидной окружности равен где a, b и c — длины сторон треугольника, D — диаметр описанной окружности.
  • In geometry, the orthocentroidal circle of a non-equilateral triangle is the circle that has the triangle's orthocenter and its centroid at opposite ends of a diameter. This diameter also contains the triangle's nine-point center and is a subset of the Euler line, which also contains the circumcenter outside the orthocentroidal circle. Guinand showed in 1984 that the triangle's incenter must lie in the interior of the orthocentroidal circle, but not coinciding with the nine-point center; that is, it must fall in the open orthocentroidal disk punctured at the nine-point center. The incenter could be any such point, depending on the specific triangle having that particular orthocentroidal disk. Furthermore, the Fermat point, the Gergonne point, and the symmedian point are in the open orthocentroidal disk punctured at its own center (and could be at any point therein), while the second Fermat point and Feuerbach point are in the exterior of the orthocentroidal circle. The set of potential locations of one or the other of the Brocard points is also the open orthocentroidal disk. The square of the diameter of the orthocentroidal circle is where a, b, and c are the triangle's side lengths and D is the diameter of its circumcircle.
prov:wasDerivedFrom
page length (characters) of wiki page
is foaf:primaryTopic of
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software