About: Octonion algebra     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Science105999797, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FOctonion_algebra

In mathematics, an octonion algebra or Cayley algebra over a field F is a composition algebra over F that has dimension 8 over F. In other words, it is a unital non-associative algebra A over F with a non-degenerate quadratic form N (called the norm form) such that for all x and y in A. Zorn’s German language description of this Cayley–Dickson construction contributed to the persistent use of this eponym describing the construction of composition algebras. has proposed that octonion algebras can be utilized in an attempt to reconcile components of the standard model.

AttributesValues
rdf:type
rdfs:label
  • Algèbre d'octonions (fr)
  • 八元数環 (ja)
  • Octonion algebra (en)
rdfs:comment
  • En mathématiques, une algèbre d'octonions sur un corps commutatif est une algèbre non associative de dimension 8 qui généralise l'algèbre des octonions de Cayley. Dans cet article, K désigne un corps commutatif (de caractéristique quelconque) et les algèbres ne sont pas supposées être associatives ou unitaires et elles sont supposées être de dimension finie. (fr)
  • 数学における体 F 上の八元数代数または八元数環(はちげんすうかん、英: octonion algebra)とは、F 上 8-次元の合成代数、すなわち F 上 8-次元の単位的非結合多元環でノルム(ノルム形式)と呼ばれる非退化二次形式 N を備えたものをいう。ノルム N は、条件 を A の各元 x, y について満たす。 最もよく知られた八元数環は、実数体 R 上の八元数環である古典的なケーリーの八元数全体の成す多元体 O である。分解型八元数の全体もやはり R 上の八元数環を成す。の違いを除いて R 上の八元数環はこの二つのみである。 分解型八元数環はその二次形式 N が等方的である(つまり、N(x) = 0 となる非零ベクトルをもつ)ような八元数環をいう。体 F 上の分解型八元数環は F-代数の同型を除いて一意的に存在する。F が代数閉体または有限体のとき、それは F 上の唯一の八元数環である(「通常型」の八元数環は存在しない)。 八元数環は必ず非結合的になるが、より弱い形の結合性条件を満たす交代代数になる。さらに、任意の八元数環がを満足する。したがって、任意の八元数環において可逆元全体の成す集合は(ノルムが 1 の元全体と同様に)(単位的ムーファン擬群)を成す。 (ja)
  • In mathematics, an octonion algebra or Cayley algebra over a field F is a composition algebra over F that has dimension 8 over F. In other words, it is a unital non-associative algebra A over F with a non-degenerate quadratic form N (called the norm form) such that for all x and y in A. Zorn’s German language description of this Cayley–Dickson construction contributed to the persistent use of this eponym describing the construction of composition algebras. has proposed that octonion algebras can be utilized in an attempt to reconcile components of the standard model. (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
id
title
  • Cayley–Dickson algebra (en)
has abstract
  • En mathématiques, une algèbre d'octonions sur un corps commutatif est une algèbre non associative de dimension 8 qui généralise l'algèbre des octonions de Cayley. Dans cet article, K désigne un corps commutatif (de caractéristique quelconque) et les algèbres ne sont pas supposées être associatives ou unitaires et elles sont supposées être de dimension finie. (fr)
  • In mathematics, an octonion algebra or Cayley algebra over a field F is a composition algebra over F that has dimension 8 over F. In other words, it is a unital non-associative algebra A over F with a non-degenerate quadratic form N (called the norm form) such that for all x and y in A. The most well-known example of an octonion algebra is the classical octonions, which are an octonion algebra over R, the field of real numbers. The split-octonions also form an octonion algebra over R. Up to R-algebra isomorphism, these are the only octonion algebras over the reals. The algebra of bioctonions is the octonion algebra over the complex numbers C. The octonion algebra for N is a division algebra if and only if the form N is anisotropic. A split octonion algebra is one for which the quadratic form N is isotropic (i.e., there exists a non-zero vector x with N(x) = 0). Up to F-algebra isomorphism, there is a unique split octonion algebra over any field F. When F is algebraically closed or a finite field, these are the only octonion algebras over F. Octonion algebras are always non-associative. They are, however, alternative algebras, alternativity being a weaker form of associativity. Moreover, the Moufang identities hold in any octonion algebra. It follows that the invertible elements in any octonion algebra form a Moufang loop, as do the elements of unit norm. The construction of general octonion algebras over an arbitrary field k was described by Leonard Dickson in his book Algebren und ihre Zahlentheorie (1927) (Seite 264) and repeated by Max Zorn. The product depends on selection of a γ from k. Given q and Q from a quaternion algebra over k, the octonion is written q + Qe. Another octonion may be written r + Re. Then with * denoting the conjugation in the quaternion algebra, their product is Zorn’s German language description of this Cayley–Dickson construction contributed to the persistent use of this eponym describing the construction of composition algebras. has proposed that octonion algebras can be utilized in an attempt to reconcile components of the standard model. (en)
  • 数学における体 F 上の八元数代数または八元数環(はちげんすうかん、英: octonion algebra)とは、F 上 8-次元の合成代数、すなわち F 上 8-次元の単位的非結合多元環でノルム(ノルム形式)と呼ばれる非退化二次形式 N を備えたものをいう。ノルム N は、条件 を A の各元 x, y について満たす。 最もよく知られた八元数環は、実数体 R 上の八元数環である古典的なケーリーの八元数全体の成す多元体 O である。分解型八元数の全体もやはり R 上の八元数環を成す。の違いを除いて R 上の八元数環はこの二つのみである。 分解型八元数環はその二次形式 N が等方的である(つまり、N(x) = 0 となる非零ベクトルをもつ)ような八元数環をいう。体 F 上の分解型八元数環は F-代数の同型を除いて一意的に存在する。F が代数閉体または有限体のとき、それは F 上の唯一の八元数環である(「通常型」の八元数環は存在しない)。 八元数環は必ず非結合的になるが、より弱い形の結合性条件を満たす交代代数になる。さらに、任意の八元数環がを満足する。したがって、任意の八元数環において可逆元全体の成す集合は(ノルムが 1 の元全体と同様に)(単位的ムーファン擬群)を成す。 (ja)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (62 GB total memory, 54 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software