About: Octonion     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatNumbers, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FOctonion

In mathematics, the octonions are a normed division algebra over the real numbers, meaning it is a hypercomplex number system; Octonions are usually represented by the capital letter O, using boldface O or blackboard bold . Octonions have eight dimensions; twice the number of dimensions of the quaternions, of which they are an extension. They are noncommutative and nonassociative, but satisfy a weaker form of associativity; namely, they are alternative. They are also power associative.

AttributesValues
rdf:type
rdfs:label
  • أوكتونيون
  • Octonió
  • Oktonion
  • Oktave (Mathematik)
  • Οκτόνιο
  • Octonion
  • Octonión
  • Oktonioi
  • Octonion
  • Oktonion
  • Ottetto (matematica)
  • 八元数
  • 팔원수
  • Octonion
  • Oktawy Cayleya
  • Octoniões
  • Алгебра Кэли
  • Oktonion
  • Октоніони
  • 八元数
rdfs:comment
  • أوكتونيون Octonion في الرياضيات هي امتداد كعملية غير تجميعية للكواتيرنيون. أبعادها الثمانية الحقيقية الجبرية في حقل الأعداد الحقيقية هو أوسع حقل بعدي من الممكن الحصول عليه باستخدام . يرمز جبرياً إلى الأوكتونيون بالرمز O أو بالحرف العريض . ربما بسبب أن الأوكتونيون لاتحقق الخاصة التجميعية لعملية الضرب، فإنها تجذب اهتماماً أقل من الكواتيرنيون، ولكن وعلى الرغم من شهرتها الضئيلة هذه فإن الأوكتونيون لها تطبيقات عدة في مجالات نظرية الأوتار، النسبية الخاصة، .
  • Die (reellen) Oktaven, auch Oktonionen oder Cayleyzahlen, sind eine Erweiterung der Quaternionen und besitzen das Mengensymbol . Sie entstehen durch die Anwendung des Verdopplungsverfahrens aus den Quaternionen und bilden einen Alternativkörper. Damit liefern sie als Koordinatenbereich ein Beispiel für eine echte, das heißt nichtdesarguessche Moufangebene in der synthetischen Geometrie.
  • Στα μαθηματικά, τα οκτόνια είναι μέρος της άλγεβρας. Συμβολίζονται με έντονο Ο, ή αλλιώς με το σύμβολο .
  • En mathématiques, les octonions ou octaves sont une extension non associative des quaternions. Ils forment une algèbre à huit dimensions sur le corps ℝ des nombres réels. L’algèbre des octonions est généralement notée 𝕆. En perdant l’importante propriété d’associativité, les octonions ont reçu moins d’attention que les quaternions. Malgré cela, ils gardent leur importance en algèbre et en géométrie, notamment parmi les groupes de Lie.
  • Oktonion adalah sebuah barisan 8 bilangan riil dan merupakan salah satu dari 4 bilangan dengan bilangan riil, bersama dengan bilangan riil, bilangan kompleks dan kuaternion. Sifat-sifat aritmetis oktonion diterapkan dalam bidang-bidang seperti teori dawai, relativitas khusus dan . Oktonion ditemukan oleh pada tahun 1843, karena inspirasi penemuan kuaternion oleh temannya William Rowan Hamilton.
  • 数学における八元数(はちげんすう、英: octonions; オクトニオン)の全体は実数体上のノルム多元体で、ふつう大文字アルファベットの O を使って、太字の O(あるいは黒板太字の 𝕆)で表される。実数体上のノルム多元体はたった四種類であり、O のほかは、実数の全体 R, 複素数の全体 C, 四元数の全体 H しかない。O はこれらノルム多元体の中で最大のもので、実八次元、これは H の次元の二倍である(O は H を拡大して得られる)。八元数の全体 O における乗法は非可換かつ非結合的だが、弱い形の結合性であるは満足する。 より広く調べられ利用されている四元数や複素数に比べれば、八元数についてはそれほどよく知られているわけではない。にもかかわらず、八元数にはいくつも興味深い性質があり、それに関連して(例外型リー群が持つような)例外的な構造もいくつも備えている。加えて、八元数は弦理論などといった分野に応用を持っている。 八元数は、ハミルトンの四元数の発見に刺激を受けたによって1843年に発見され、グレイヴスはこれを octaves と呼んだ。それとは独立にケイリーも八元数を発見しており、八元数のことをケイリー数、その全体をケイリー代数と呼ぶことがある。
  • In matematica, gli ottetti (o ottonioni) sono un'estensione non associativa dei quaternioni. L'algebra relativa viene spesso denotata con oppure con O.
  • 팔원수(八元數, 영어: octonion 옥토니언[*]) 또는 케일리 수(영어: Cayley number)는 유일한 8차원 비가환 비결합 노름 이다.
  • А́лгебра Кэ́ли — система гиперкомплексных чисел, 8-мерная алгебра над полем вещественных чисел.Обычно обозначается , поскольку её элементы (числа Кэли) называются иногда октонионами или октавами.
  • 八元数是四元数的一个非结合推广,通常记为O,或。 也许是因为八元数不提供一个结合性的乘法,它们比四元数引起较少的注意。尽管如此,八元数仍然与数学中的一些例外结构有关,其中包括例外李群。此外,八元数在诸如弦理论、狭义相对论和中也有应用。
  • Els octonions són l'extensió no associativa dels quaternions. Van ser descoberts per John Thomas Graves el 1843, i independentment per Arthur Cayley, qui ho va publicar per primera vegada el 1845. Són anomenats, de vegades, nombres de Cayley. Els octonions formen una àlgebra 8-dimensional sobre els nombres reals i poden ser compresos com un octet ordenat de nombres reals. Cada octonions forma una combinació lineal de la base: 1, i 1 , i 2 , i 3 , i 4 , i 5 , i 6 , i 7 .La forma de multiplicar octonions està donada en la taula següent:
  • V matematice se pojmem oktoniony označuje neasociativní rozšíření kvaternionů. Tvoří osmidimenzionální algebru nad reálnými čísly, nejstarší známý příklad neasociativního okruhu. Oktoniony tvoří poslední, a tudíž nejobecnější typ tzv. normovaných algeber s dělením (též nazývané Hurwitzovy algebry). Je velmi překvapivé, že existují právě jen čtyři takové algebry: Reálná čísla, komplexní čísla, kvaterniony a oktoniony. Principiální rozdíl mezi vektorovými prostory a Hurwitzovými algebrami spočívá právě v operaci dělení: zatímco u vektorů operaci dělení dvou vektorů vůbec nezavádíme (neexistuje), u normovaných algeber s dělením (vzájemně jednoznačná a invertibilní) operace dělení existuje. Hurwitzovy algebry však existují jen ve čtyřech výlučných dimenzích: 1, 2, 4, 8. Dimenze 8 má tedy určit
  • In mathematics, the octonions are a normed division algebra over the real numbers, meaning it is a hypercomplex number system; Octonions are usually represented by the capital letter O, using boldface O or blackboard bold . Octonions have eight dimensions; twice the number of dimensions of the quaternions, of which they are an extension. They are noncommutative and nonassociative, but satisfy a weaker form of associativity; namely, they are alternative. They are also power associative.
  • Oktonioiak koaternioien orokortze ez elkarkorra da. Oktonioien taldea adierazteko 𝕆 hizkia erabiltzen da. Zenbaki horiek 1843an, eta Arthur Cayleyek, lehenengo aldiz 1845ean argitaratu zuena, bakoitzak bere aldetik aurkitu zituzten. Batzuetan, Cayleyen zenbakiak ere deitzen dituzte. Oktonioiek zenbaki errealen gaineko 8-dimentsional bat osatzen dute eta zenbaki errealen zortzikote ordenatutzat har daitezke. Oktonioi bakoitzak ondoko oinarriaren konbinazio lineala da: 1, i 1 , i 2 , i 3 , i 4 , i 5 , i 6 , i 7 . Hau da: Oktonioiak biderkatzeko taula hau erabiltzen da:
  • Los octoniones son la extensión no asociativa de los cuaterniones. Fueron descubiertos por John T. Graves en 1843, e independientemente por Arthur Cayley, quien lo publicó por primera vez en 1845. Son llamados, a veces números de Cayley. Los octoniones forman un álgebra 8-dimensional sobre los números reales y pueden ser comprendidos como un octeto ordenado de números reales. Cada octonión forma una combinación lineal de la base: 1, e1, e2, e3, e4, e5, e6, e7.La forma de multiplicar octoniones está dada en la tabla siguiente:
  • In de wiskunde zijn de octonionen een niet-associatieve uitbreiding van de quaternionen. Hun 8-dimensionale genormeerde delingsalgebra over de reële getallen is de meest uitgebreide vorm, die men met behulp van de Cayley-Dickson-constructie kan ontwikkelen. De algebra van octonionen wordt vaak aangeduid met O, of in zogenaamd schoolbordvet door .
  • Oktawy Cayleya, oktoniony (łac. octo – osiem), liczby Cayleya – rozszerzenie kwaternionów stanowiące niełączną algebrę. Zostały równolegle odkryte przez dwóch matematyków: w roku 1843 i Arthura Cayleya w roku 1845. Oktawy są trzecią z kolei po liczbach zespolonych i kwaternionach algebrą powstałą przez zastosowanie konstrukcji Cayleya-Dicksona do liczb rzeczywistych. Kolejność w mnożeniu to wiersze (ei) – kolumny (ej). Stąd też: dla tu działania oznaczają: * jeśli lub jeśli * Szczególnym przypadkiem oktaw Cayleya są: * liczby rzeczywiste, * liczby zespolone, * kwaterniony. * sedenionów
  • Na matemática, os octoniões (pt) ou octônios (pt-BR) são uma extensão não-associativa dos quaterniões. Sua álgebra da divisão formada de 8 dimensões sobre os números reais é o mais extenso que pode ser obtido da construção de Cayley-Dickson. A álgebra do octoniões é frequentemente denotada como .
  • Октоніо́н, окта́ва (число Келі) — гіперкомплексне число розмірності вісім. Октоніони були вивчені 1843 року ірландським математиком і, незалежно, через два роки Артуром Келі. На честь останнього октоніони доволі часто називають числами Келі. Можуть бути отримані з кватерніонів за допомогою процедури подвоєння Келі-Діксона. Кожен октоніон x може бути записаним у формі лінійної комбінації базових елементів із дійсними коефіцієнтами: Таблиця множення базових елементів : За теоремою Фробеніуса, алгебра Келі є єдиною 8-вимірною дійсною альтернативною алгеброю без дільників нуля.
  • Oktonionerna är en icke-associativ utvidgning av kvaternionerna.De upptäcktes av år 1843, och oberoende av Arthur Cayley, som 1845 publicerade det första arbetet om dem. De kallas ibland Cayleytal eller Cayleys algebra. Mängden av oktonioner betecknas 𝕆 eller O. Oktonionerna bildar en 8-dimensionell algebra över de reella talen, och kan därför ses som oktetter av reella tal. Varje oktonion är en reell linjärkombination av enhetsoktonionerna 1, e1, e2, e3, e4, e5, e6 och e7, vars multiplikationstabell ser ut som följer. Oktonionstjärna Sök triangeln där enheterna är i hörn.
foaf:isPrimaryTopicOf
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software