About: Normal space     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Maxim107152948, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FNormal_space

In topology and related branches of mathematics, a normal space is a topological space X that satisfies Axiom T4: every two disjoint closed sets of X have disjoint open neighborhoods. A normal Hausdorff space is also called a T4 space. These conditions are examples of separation axioms and their further strengthenings define completely normal Hausdorff spaces, or T5 spaces, and perfectly normal Hausdorff spaces, or T6 spaces.

AttributesValues
rdf:type
rdfs:label
  • Normaler Raum
  • Normal space
  • Espacio normal
  • Espace normal
  • Spazio normale
  • 정규 공간
  • Normale ruimte
  • Przestrzeń T4
  • Espaço normal
  • Нормальное пространство
  • Normalt rum
  • Нормальний простір
  • 正规空间
rdfs:comment
  • In topology and related branches of mathematics, a normal space is a topological space X that satisfies Axiom T4: every two disjoint closed sets of X have disjoint open neighborhoods. A normal Hausdorff space is also called a T4 space. These conditions are examples of separation axioms and their further strengthenings define completely normal Hausdorff spaces, or T5 spaces, and perfectly normal Hausdorff spaces, or T6 spaces.
  • En mathématiques, un espace normal est un espace topologique vérifiant un axiome de séparation plus fort que la condition usuelle d'être un espace séparé. Cette définition est à la base de résultats comme le lemme d'Urysohn ou le théorème de prolongement de Tietze. Tout espace métrisable est normal.
  • En Topología y ramas relacionadas de la matemática, los espacios normales, espacios T4, y espacios T5 son tipos particulares de espacios topológicos. Estas condiciones son ejemplos de Axiomas de separación.
  • 일반위상수학에서, 정규 공간(正規空間, 영어: normal space)은 서로소 닫힌집합들을 서로소 근방 또는 연속 실함수로 분리할 수 있는 위상 공간이다. 정규 공간에는 "충분한 수의" 연속 실함수가 존재하여, 닫힌집합에 정의된 실함수를 공간 전체로 연장할 수 있다 (티체 확장 정리 Tietze擴張定理, 영어: Tietze extension theorem).
  • In de topologie en verwante deelgebieden van de wiskunde zijn normale ruimten (ook wel T4-ruimten, T5-ruimten en T6-ruimten genoemd) bijzonder aangename types topologische ruimten. Deze voorwaarden zijn voorbeelden van scheidingsaxiomas.
  • Норма́льное простра́нство — топологическое пространство, удовлетворяющее аксиомам отделимости T1, T4, то есть такое топологическое пространство, в котором одноточечные множества замкнуты и любые два непересекающихся замкнутых множества отделимы окрестностями (то есть содержатся в непересекающихся открытых множествах).
  • Em topologia, e ramos relacionados da matemática, um espaço topológico é dito normal caso ele satisfaça a seguinte propriedade de separação: Para todo par de fechados dijuntos e em existem abertos disjuntos e de forma que e . Dizemos também que separa fechados. Quando X é métrico e Hausdorff, então é normal e diz-se que X é um espaço T4.
  • Normalt rum är ett matematiskt begrepp inom topologin. Relaterade begrepp är fullständigt normala och perfekt normala rum. Villkoren för normala, fullständigt normala och perfekt normala rum är exempel på .
  • 在拓扑学和相关的数学分支中,正规空间(Normal space)、T4 空间、T5 空间和 T6 空间是特别优秀的一类拓扑空间。这些条件是分离公理的个例。
  • Нормальний простір — топологічний простір, який задовольняє аксіомам віддільності T1, T4, тобто такий топологічний простір, в якому одноточкові множини замкнені і будь-які дві диз'юнктні (тобто,такі, що не перетинаються) замкнуті множини мають диз'юнктні околи.
  • Hinweis: Es gibt in der Standardliteratur keine einheitliche Auffassung hinsichtlich der Begriffe normaler Raum und T4-Raum; vielmehr herrscht Uneinheitlichkeit. In diesem Artikel gilt die Auffassung, dass ein T4-Raum ein normaler Hausdorff-Raum ist, während ein normaler Raum nicht notwendig hausdorffsch zu sein hat. Ein normaler Raum ist ein topologischer Raum, in dem zwei beliebige disjunkte abgeschlossene Mengen disjunkte Umgebungen haben. Kürzer: Abgeschlossene Mengen E, F werden durch Umgebungen U, V getrennt. Normalität vererbt sich nicht notwendig auf alle Teilräume.
  • In matematica, e più precisamente in topologia, uno spazio normale è uno spazio topologico che soddisfa il seguente assioma di separazione: Per ogni coppia di chiusi disgiunti (E, F), esiste una coppia di aperti disgiunti (U,V) tali che U contiene E e V contiene F. Nelle pubblicazioni matematiche la nomenclatura è spesso instabile e le due definizioni sono spesso scambiate, a seconda del periodo storico o del gusto dell'autore.
  • Przestrzeń normalna i przestrzeń T4 to terminy w topologii opisujące tę samą lub bardzo pokrewne własności oddzielania. Mówi się, że w przestrzeni topologicznej rozłączne zbiory domknięte mogą być oddzielane przez zbiory otwarte jeśli dla każdych rozłącznych zbiorów domkniętych można znaleźć takie rozłączne zbiory otwarte że i Czasami w sytuacji jak przedstawiona na rysunku powyżej mówi się, że zbiory domknięte są rozdzielone przez otoczenia otwarte
foaf:depiction
  • External Image
foaf:isPrimaryTopicOf
thumbnail
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3321 as of Jun 2 2021, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software