# ## About: Nine-point hyperbolaGotoSponge NotDistinct Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org associated with source document(s)  In plane geometry with triangle ABC, the nine-point hyperbola is an instance of the nine-point conic described by Maxime Bôcher in 1892. The celebrated nine-point circle is a separate instance of Bôcher's conic: Given a triangle ABC and a point P in its plane, a conic can be drawn through the following nine points:the midpoints of the sides of ABC,the midpoints of the lines joining P to the vertices, andthe points where these last named lines cut the sides of the triangle.

AttributesValues
rdfs:label
• Nine-point hyperbola
rdfs:comment
• In plane geometry with triangle ABC, the nine-point hyperbola is an instance of the nine-point conic described by Maxime Bôcher in 1892. The celebrated nine-point circle is a separate instance of Bôcher's conic: Given a triangle ABC and a point P in its plane, a conic can be drawn through the following nine points:the midpoints of the sides of ABC,the midpoints of the lines joining P to the vertices, andthe points where these last named lines cut the sides of the triangle.
foaf:isPrimaryTopicOf
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
has abstract
• In plane geometry with triangle ABC, the nine-point hyperbola is an instance of the nine-point conic described by Maxime Bôcher in 1892. The celebrated nine-point circle is a separate instance of Bôcher's conic: Given a triangle ABC and a point P in its plane, a conic can be drawn through the following nine points:the midpoints of the sides of ABC,the midpoints of the lines joining P to the vertices, andthe points where these last named lines cut the sides of the triangle. The conic is an ellipse if P lies in the interior of ABC or in one of the regions of the plane separated from the interior by two sides of the triangle; otherwise, the conic is a hyperbola. Bôcher notes that when P is the orthocenter, one obtains the nine-point circle, and when P is on the circumcircle of ABC, then the conic is an equilateral hyperbola.
prov:wasDerivedFrom
page length (characters) of wiki page
is foaf:primaryTopic of
is Link from a Wikipage to another Wikipage of
Faceted Search & Find service v1.17_git51 as of Sep 16 2020   OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software