Attributes  Values 

rdf:type
 
rdfs:label
  Nilmanifold
 영다양체
 Нильмногообразие
 Нільмноговид

rdfs:comment
  미분위상수학에서, 영다양체(零多樣體, 영어: nilmanifold)는 멱영 리 군의 몫공간으로 얻어지는 동차공간이다. 해다양체의 특수한 경우이며, 기하화 추측에서 3차원 다양체를 분류하는 기하 가운데 하나이다.
 Нѝльмногообра́зие — компактное факторпространство связной нильпотентной группы Ли.
 Нільмноговид — компактний факторпростір зв'язної нільпотентної групи Лі.
 In mathematics, a nilmanifold is a differentiable manifold which has a transitive nilpotent group of diffeomorphisms acting on it. As such, a nilmanifold is an example of a homogeneous space and is diffeomorphic to the quotient space , the quotient of a nilpotent Lie group N modulo a closed subgroup H. This notion was introduced by Anatoly Mal'cev in 1951. In addition to their role in geometry, nilmanifolds are increasingly being seen as having a role in arithmetic combinatorics (see Green–Tao) and ergodic theory (see, e.g., Host–Kra).

foaf:isPrimaryTopicOf
 
dct:subject
 
Wikipage page ID
 
Wikipage revision ID
 
Link from a Wikipage to another Wikipage
 
sameAs
 
has abstract
  In mathematics, a nilmanifold is a differentiable manifold which has a transitive nilpotent group of diffeomorphisms acting on it. As such, a nilmanifold is an example of a homogeneous space and is diffeomorphic to the quotient space , the quotient of a nilpotent Lie group N modulo a closed subgroup H. This notion was introduced by Anatoly Mal'cev in 1951. In the Riemannian category, there is also a good notion of a nilmanifold. A Riemannian manifold is called a homogeneous nilmanifold if there exist a nilpotent group of isometries acting transitively on it. The requirement that the transitive nilpotent group acts by isometries leads to the following rigid characterization: every homogeneous nilmanifold is isometric to a nilpotent Lie group with leftinvariant metric (see Wilson). Nilmanifolds are important geometric objects and often arise as concrete examples with interesting properties; in Riemannian geometry these spaces always have mixed curvature, almost flat spaces arise as quotients of nilmanifolds, and compact nilmanifolds have been used to construct elementary examples of collapse of Riemannian metrics under the Ricci flow. In addition to their role in geometry, nilmanifolds are increasingly being seen as having a role in arithmetic combinatorics (see Green–Tao) and ergodic theory (see, e.g., Host–Kra).
 미분위상수학에서, 영다양체(零多樣體, 영어: nilmanifold)는 멱영 리 군의 몫공간으로 얻어지는 동차공간이다. 해다양체의 특수한 경우이며, 기하화 추측에서 3차원 다양체를 분류하는 기하 가운데 하나이다.
 Нѝльмногообра́зие — компактное факторпространство связной нильпотентной группы Ли.
 Нільмноговид — компактний факторпростір зв'язної нільпотентної групи Лі.

prov:wasDerivedFrom
 
page length (characters) of wiki page
 
is rdfs:seeAlso
of  
is foaf:primaryTopic
of  
is Link from a Wikipage to another Wikipage
of  
is Wikipage redirect
of  