About: Morley's trisector theorem     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Message106598915, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FMorley%27s_trisector_theorem

In plane geometry, Morley's trisector theorem states that in any triangle, the three points of intersection of the adjacent angle trisectors form an equilateral triangle, called the first Morley triangle or simply the Morley triangle. The theorem was discovered in 1899 by Anglo-American mathematician Frank Morley. It has various generalizations; in particular, if all of the trisectors are intersected, one obtains four other equilateral triangles.

AttributesValues
rdf:type
rdfs:label
  • مبرهنة مورلي
  • Morley-Dreieck
  • Morley's trisector theorem
  • Trisekcant-Teoremo de Morley
  • Teorema de Morley
  • Théorème de Morley
  • モーリーの定理
  • 몰리 삼등분 정리
  • Trisectricestelling van Morley
  • Trysekcja Morleya
  • Triângulo de Morley
  • Теорема Морлея
  • 莫雷角三分線定理
rdfs:comment
  • في الهندسة الرياضية، تنص مبرهنة مورلي على أنه في أي مثلث، إن قاسمات الزوايا إلى ثلاث زوايا طبوقة تتقاطع في ثلاث نقاط مشكلة مثلث متساوي الأضلاع يسمى مثلث مورلي. تم اكتشاف هذه المبرهنة في عام 1899 من قبل الرياضياتي الأمريكي . تأخذ المبرهنة اهتماماً خاصة لعدم وجود طريقة في الهندسة الإقليدية لإنشاء قاسم ثلاثي لزاوية (تثليث زاوية)، وبالتالي عدم وجود طريقة لإنشاء مثلث مورلي المتساوي الأضلاع.
  • In plane geometry, Morley's trisector theorem states that in any triangle, the three points of intersection of the adjacent angle trisectors form an equilateral triangle, called the first Morley triangle or simply the Morley triangle. The theorem was discovered in 1899 by Anglo-American mathematician Frank Morley. It has various generalizations; in particular, if all of the trisectors are intersected, one obtains four other equilateral triangles.
  • Das Morley-Dreieck, benannt nach Frank Morley, ist ein gleichseitiges Dreieck, welches innerhalb eines beliebigen Dreiecks konstruiert werden kann.
  • En mathématiques, et plus précisément en géométrie plane, le théorème de Morley, découvert par Frank Morley en 1898, affirme que les intersections des trissectrices des angles d'un triangle forment un triangle équilatéral. Le triangle équilatéral ainsi défini par le théorème de Morley s'appelle le « triangle de Morley » du triangle de départ.
  • モーリーの定理とは、三角形に関する幾何学の定理である。1899年にアメリカの数学者によって証明された。
  • 기하학에서, 몰리 삼등분 정리(Morley三等分定理, 영어: Morley's trisector theorem)는 삼각형의 한 가지 경이로운 성질에 대한 정리이다. 이에 따르면, 임의의 삼각형의 각의 의 이웃하는 것들끼리의 교점은 정삼각형의 꼭짓점을 이룬다.
  • O triângulo de Morley, denominado em memória de Frank Morley, é um triângulo equilátero construído no interior de um triângulo qualquer.
  • 在欧几里得幾何中,莫雷角三分線定理(Morley's theorem)說明對所有的三角形,其三個内角作角三分線,靠近公共边三分線的三個交點,是一個等邊三角形。此定理由法蘭克·莫雷在1899年發現。对外角作外角三分線,也會有类似的性质,可以再作出4個等邊三角形。 此定理有趣的地方是我們沒辦法用尺規作圖作出其等邊三角形,因為已經證明出尺規作圖無法作出三等分角。
  • Теорема Морлея про трисектриси — одна з найдивовижніших теорем . Трисектрисами кута називаються два промені, що ділять кут на три рівні частини. Теорема стверджує: Точки перетину суміжних трисектрис кутів довільного трикутника є вершинами рівностороннього трикутника. На кресленні праворуч три різнокольорових кута при кожній вершині великого трикутника рівні між собою. Теорема стверджує, що незалежно від вибору великого трикутника, маленький фіолетовий трикутник буде рівностороннім.
  • La Trisekcant-Teoremo de Morley en la ebena geometrio, diras, ke en ajna triangulo, la tri punktoj de interkruciĝo de la apudaj angul-trisekcantoj formas egallateran triangulon. La teoremo estis malkovrita fare de angla-usona matematikisto .
  • En geometría plana, el teorema de Morley establece que, en un triángulo cualquiera, los tres puntos de intersección entre trisectrices de ángulos adyacentes forman un triángulo equilátero, denominado triángulo de Morley. El teorema fue descubierto en 1889 por el matemático angloestadounidense . Tiene varias generalizaciones, en particular, si se intersecan todas las trisectrices, se obtienen otros cuatro triángulos equiláteros.
  • Trysekcja Morleya – twierdzenie mówiące, że w dowolnym trójkącie trzy punkty, powstałe przez przecięcie prostych dzielących kąty trójkąta na trzy równe części, tworzą trójkąt równoboczny, zwany ”trójkątem Morleya”. Twierdzenie zostało odkryte w 1899 r. przez anglo-amerykańskiego matematyka Franka Morleya, opublikowane jednak dopiero w 1924. Twierdzenie ma różne uogólnienia m.in.: jeżeli wszystkie linie dzielące kąty trójkąta na trzy równe części przecinają się, otrzymuje się 4 nowe trójkąty równoboczne.
  • De trisectricestelling van Morley luidt: Maak in een driehoek de lijnen die de hoeken van die driehoek in drie gelijke delen verdelen, de trisectrices. Neem bij elke zijde vanuit de hoekpunten de twee aanliggende trisectrices en daarvan hun snijpunt. De drie snijpunten vormen dan een gelijkzijdige driehoek, de driehoek van Morley. De Franse wiskundige Pierre Wantzel bewees in 1837 dat de driedeling van de hoek met alleen passer en liniaal onmogelijk is.
foaf:depiction
  • External Image
foaf:isPrimaryTopicOf
thumbnail
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software