About: Mori–Nagata theorem     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Theorem106752293, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FMori%E2%80%93Nagata_theorem

In algebra, the Mori–Nagata theorem introduced by Yoshiro Mori and Nagata, states the following: let A be a noetherian reduced commutative ring with the total ring of fractions K. Then the integral closure of A in K is a direct product of r Krull domains, where r is the number of minimal prime ideals of A. The theorem is a partial generalization of the Krull–Akizuki theorem, which concerns a one-dimensional noetherian domain. A consequence of the theorem is that if R is a Nagata ring, then every R-subalgebra of finite type is again a Nagata ring. The Mori–Nagata theorem follows from .

AttributesValues
rdf:type
rdfs:label
  • Mori–Nagata theorem (en)
  • Mori–Nagatas sats (sv)
rdfs:comment
  • In algebra, the Mori–Nagata theorem introduced by Yoshiro Mori and Nagata, states the following: let A be a noetherian reduced commutative ring with the total ring of fractions K. Then the integral closure of A in K is a direct product of r Krull domains, where r is the number of minimal prime ideals of A. The theorem is a partial generalization of the Krull–Akizuki theorem, which concerns a one-dimensional noetherian domain. A consequence of the theorem is that if R is a Nagata ring, then every R-subalgebra of finite type is again a Nagata ring. The Mori–Nagata theorem follows from . (en)
  • Inom matematiken är Mori–Nagatas sats, introducerad av och, en sats som säger följande: låt A vara en noethersk kommutativ ring med K. Då är av A i K en av r , där r är antalet a A. Satsen är en partiell generalisering av , som behandlar endimensionella noetherska domäner. En konsekvens av satsen är att om R är en , så är varje R-delalgebra av ändlig typ en Nagataring. Mori–Nagatas sats följer ur . (sv)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
authorlink
  • Yoshiro Mori (en)
first
  • Yoshiro (en)
last
  • Mori (en)
year
has abstract
  • In algebra, the Mori–Nagata theorem introduced by Yoshiro Mori and Nagata, states the following: let A be a noetherian reduced commutative ring with the total ring of fractions K. Then the integral closure of A in K is a direct product of r Krull domains, where r is the number of minimal prime ideals of A. The theorem is a partial generalization of the Krull–Akizuki theorem, which concerns a one-dimensional noetherian domain. A consequence of the theorem is that if R is a Nagata ring, then every R-subalgebra of finite type is again a Nagata ring. The Mori–Nagata theorem follows from . (en)
  • Inom matematiken är Mori–Nagatas sats, introducerad av och, en sats som säger följande: låt A vara en noethersk kommutativ ring med K. Då är av A i K en av r , där r är antalet a A. Satsen är en partiell generalisering av , som behandlar endimensionella noetherska domäner. En konsekvens av satsen är att om R är en , så är varje R-delalgebra av ändlig typ en Nagataring. Mori–Nagatas sats följer ur . (sv)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is known for of
is known for of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (61 GB total memory, 49 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software